
BASIC OF CONTROL
(with Python)

Masahide TAMAKI

Contents

1 INTRODUCTION 1
1.1 About this document . 1
1.2 What is control? . 1

1.2.1 Feedback control . 2
1.2.2 Control system design concept . 2

1.3 Preparation of Python . 4
1.3.1 Library . 4
1.3.2 Functions . 4

2 MODELING 6
2.1 Representation of dynamic systems . 6
2.2 Transfer function . 7

2.2.1 What is transfer function? . 7
2.2.2 Properness . 8
2.2.3 Python script . 9

2.3 State-space equation . 9
2.3.1 What is state-space equation? . 9
2.3.2 Derivation of the ss equation . 10
2.3.3 Python script . 11

2.4 Relationship between TF and SS . 12
2.4.1 Transformation between TF and SS . 12
2.4.2 Python script . 12

2.5 Block diagram . 13
2.5.1 Series, parallel and feedback . 13
2.5.2 Python script . 15

3 BEHAVIOR OF PLANT 16
3.1 Time response . 16

3.1.1 First-order lag system . 16
3.1.1.1 Python script . 17
3.1.1.2 calculation of time response . 19

3.1.2 Second-order lag system . 20
3.1.2.1 Python script . 21
3.1.2.2 Calculation of time response . 24

3.1.3 Time response in ss model . 25
3.2 Stability and system behavior . 29

3.2.1 Stability . 29
3.2.1.1 Input-output stability . 29
3.2.1.2 Asymptotic stability . 29

3.2.2 Relationship between poles and system behavior . 31
3.3 Frequency response . 32

i

3.3.1 First-order lag system . 34
3.3.2 Second-order lag system . 35

4 SYSTEM DESIGN (CL) 39
4.1 Control specification for closed loop . 39

4.1.1 Stability . 39
4.1.2 Time response . 41
4.1.3 Frequency response . 42
4.1.4 Summary . 42

4.2 PID control . 43
4.2.1 P control . 44
4.2.2 PD control . 47
4.2.3 PID control . 50
4.2.4 Improved PID control . 53

4.3 Gain tuning . 57
4.3.1 Ultimate sensitivity method . 57
4.3.2 Model matching . 60

4.4 State feedback control . 63
4.4.1 Pole placement . 64
4.4.2 Controllability and observability . 65

4.4.2.1 Controllability . 65
4.4.2.2 Observability . 68

4.4.3 Optimal regulator . 69
4.4.4 Integral servo system . 71

5 SYSTEM DESIGN（OL) 74
5.1 Control specification for open loop . 74

5.1.1 Stability . 75
5.1.2 Quick-response . 79
5.1.3 Damping . 80
5.1.4 Steady-state properties . 81
5.1.5 Summary . 81

5.2 PID control (open-loop characteristics) . 81
5.2.1 P control . 82
5.2.2 PI control . 83
5.2.3 PID control . 85
5.2.4 Summary . 87

5.3 Phase lead and lag compensation . 90
5.3.1 Phase lag compensation . 90
5.3.2 Phase lead compensation . 91
5.3.3 Control system design for vertical drive arm . 93

6 ADVANCED CONTROL 99
6.1 Observer . 99

6.1.1 Full-order state observer . 100
6.1.2 Disturbance observer . 104
6.1.3 Stationary Kalman filter . 106

6.2 Robust control . 108
6.2.1 About robust Control . 108
6.2.2 Summary of basics . 110

6.2.2.1 H∞ norm . 110
6.2.2.2 Sensitivity function . 111

6.2.3 Robust stabilization problem . 114
6.2.4 Mixed sensitivity problem . 117
6.2.5 Design of robust control in Python . 119

ii

6.2.6 Solution of H∞ control . 121
6.2.6.1 Standard problem . 121
6.2.6.2 Generalized plant in mixed sensitivity problems . 122
6.2.6.3 How to solve standard problem . 124

6.3 Optimal control . 125
6.3.1 What is optimal control . 125
6.3.2 Model predictive control . 127

6.4 Digital implementation . 130
6.4.1 Regarding discretization . 130

6.4.1.1 Discretization using zero-order hold . 130
6.4.1.2 Discretization using bilinear transformation . 131

6.4.2 Methods for discretization in Python . 131

iii

C
ha

pt
er 1

INTRODUCTION

1.1 About this document
This document encapsulates very basic points I have learned about control systems. This
also includes Python scripts to learn with practical application in mind, with specific ref-
erences to [1].

I hope this document will be helpful for both beginners and my future endeavors in
designing control mechanisms for suspension systems, main interferometers, and related
applications.

1.2 What is control?

Figure 1.1: Example of control

1

As an example of control, take a look at Figure 1.1. Consider moving a ball stationary on
the ground from point A to point B. Here, Newton’s equation of motion is described by

mẍ = u. (1.1)
This indicates that the acceleration ẍ is freely manipulated by the force u (control input).
In this way, the act of applying a manipulation to transition the state of an object of
interest to a desired target state is called “control”.

As you know, control systems are ubiquitous in our environment. They are integral to
the operation of everyday technologies such as trains and cars, as well as in the suspensions
and interferometers of KAGRA.

1.2.1 Feedback control

Figure 1.2: Block diagram

Feedback control simply means “looking at the current situation and considering the next
control input”.

This concept is illustrated in Figure 1.2. For instance, in suspension control, P represents
the suspension mass, and K denotes the controller. The actuator signal corresponds to the
control input, the mass position (or posture) to the output, and the desired position (or
posture) to the reference. The difference between the reference and the output is referred
to as the deviation. Most control systems in KAGRA, and control engineering broadly,
feed back information that is negative to the output (negative feedback). This approach is
adopted to reduce the deviation between the target value and the actual output.

Basically, the role of feedback control can be divided into the following three broad
categories,

• Stabilization

• Reference tracking

• Disturbance suppression

1.2.2 Control system design concept
In feedback control, how to determine the control input is very important. In other words,
it is necessary to consider what kind of control method to use and how to determine the

2

control parameters in accordance with the control target, which is control design.
The control design process is shown in Figure 1.3. First, a mathematical model is

constructed that accurately represents (to some degree) the characteristics of the plant.
Then, this model is used to determine the characteristics of the plant (e.g., how it behaves
when a certain control input is applied). This allows us to determine the control input so
that the plant behaves according to the reference.

The next step is to design a control law that determines the control inputs. This is
to change the characteristics of the control target to desirable ones. Since ”desirable”
here depends on the control objective, the control law is designed to satisfy the control
specification that formulates the control objective.

The last step is to implement it as the controller in a digital system, for example.

Figure 1.3: Control design

This is a bit abstract, so let’s consider a concrete example. Consider the ball shown in
Figure 1.1. For simplicity, the mass is assumed to be 1 (m = 1), and let x = 0 for point B.

Then the equation of motion is
ẍ(t) = u(t). (1.2)

Now consider feedback control

u(t) = −k1x(t) − k2ẋ(t), (1.3)

which uses information about the ball’s position and velocity to determine the force u(t).
Then the problem of determining the force on the ball boils down to the problem of de-
signing k1 and k2.

Since the motion of the ball when using control law u(t) = −k1x(t) − k2ẋ(t) is expressed
as

ẍ(t) + k2ẋ(t) + k1x(t) = 0. (1.4)
This differential equation is solved to

x(t) = C1e
λ1t + C2e

λ2t, (1.5)

3

where C1 and C2 are values determined from the initial position x(0) and initial velocity
ẋ(0), and λ1, λ2 are the roots of the characteristic polynomial

p2 + k2p + k1 = 0. (1.6)

Equation 1.5 is the expression for the behavior of the ball.
Now, the control objective here is to reach reference x = 0, so x(t) → 0 (t → ∞) is all

that is needed. Here, looking at Equation 1.5, we see that x(t) → 0 (t → ∞) is achieved if
λ1 and λ2 are negative. Also, the smaller they are, the faster they converge to 0. We can
determine k1 and k2 by taking the above into account.

In this way, instead of vaguely searching for the control input u(t), we can limit the form
of u(t) as a design condition, and then return to the problem of determining the parameters
contained in u(t). The parameters that achieve the control objective are then determined
and a control law is created. After that, the control law is implemented as a controller,
and the control objective is achieved.

1.3 Preparation of Python
1.3.1 Library

This subsection lists the Python libraries used in this document. If they are not installed
on your machine, just install them with conda or pip and so on. The usage of Python is
outside the scope of this document.

• Numpy

• Matplotlib

• Scipy

• Python-Control

1.3.2 Functions
The Python code described in Chapter 2 onward uses the following functions without
specific mention, so if the code is compiled as is, it must be defined in your Python envi-
ronment.

1 # for graph
2 def plot_set (fig_ax , *args):
3 fig_ax . set_xlabel (args [0])
4 fig_ax . set_ylabel (args [1])
5 fig_ax .grid(ls=’:’)
6

7 if len(args)==3:
8 fig_ax . legend (loc=args [2])

Listing 1.1: For Graph

4

1 # for bode plot
2 def bodeplot_set (fig_ax , *args):
3 fig_ax [0]. grid(which =’both ’,ls=’:’)
4 fig_ax [0]. set_ylabel (’Gain [dB]’)
5 fig_ax [1]. grid(which =’both ’,ls=’:’)
6 fig_ax [1]. set_xlabel (’$\\ omega$ [rad/s]’)
7 fig_ax [1]. set_ylabel (’Phase [deg]’)
8

9 if len(args) >0:
10 fig_ax [1]. legend (loc=args [0])
11 if len(args) >1:
12 fig_ax [0]. legend (loc=args [1])

Listing 1.2: For Bode Plot

5

C
ha

pt
er 2

MODELING

In this chapter, we briefly summarize the representation by differential equations, transfer
functions, state space equations, and block diagrams as basic items for modeling plant.

2.1 Representation of dynamic systems
Consider representing the general form of a dynamical system (a system in which past
outputs are related to current inputs).

In a dynamic system in which input is u and output is y, if the output y(t) at time t is
determined by the input and output up to time t, the system is described by the following
differential equation.

dn

dtn
y(t) + an−1

dn−1

dtn−1 y(t) + · · · a1
d
dt

y(t) + a0y(t)

= bm
dm

dtm
u(t) + bm−1

dm−1

dtm−1 u(t) + · · · b1
d
dt

u(t) + b0u(t)
(2.1)

Figure 2.1: Ball movement

6

For example, consider moving a ball as shown in Figure 1.1. Now consider including
friction (Fig. 2.1), and the equations of motion are as follows.

mẍ(t) = f(t) − µẋ(t) (2.2)

Here, we assume velocity as output y(t) = ẋ(t), and force as input u(t) = f(t), then we get
shape of Eq 2.1

mẏ(t) = u(t) − µy(t), (2.3)

mẏ(t) + µy(t) = u(t). (2.4)
To know the behavior of the plant, we can find the solution of such a differential equation.
However, the more complex the plant is, the more difficult it becomes to solve the differen-
tial equation because it is multi-level and higher-order. In such cases, even if the solution
can be obtained, it is often not easy to analyze the behavior.

Therefore, instead of treating differential equations as they are, they are converted into a
transfer function model in which the system is represented as a complex function, or a state
space model in which the system is represented as a vector-valued first-order differential
equation. The following sections summarize these models.

2.2 Transfer function
2.2.1 What is transfer function?

The transfer function is obtained by performing a Laplace transform

g(s) = L[g(t)] :=
∫ ∞

0
g(τ)e−sτdτ, (2.5)

on both sides of the differential equation expressed by the equation 2.1 with an initial value
of 0 and taking the ratio of the input to the output.

Transfer Function

P(s) = y(s)
u(s)

= bmsm + bm−1s
m−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0
, (2.6)

where y(s) = L[y(t)] and u(s) = L[u(t)].

TF P(s) represents the relation between system input u and output y, and system
output is shown y(s) = P(s)u(s).

For example, let’s consider the transfer dunction model 2.1. Since the differential equa-
tion for the ball is expressed by the equation 2.4, Laplace transforming it with an initial
value of 0, i.e., y(0) = 0 and ẏ(0) = 0 gives

msy(s) + µy(s) = u(s), (2.7)

7

(ms + µ)y(s) = u(s). (2.8)
So we finally get

P(s) = y(s)
u(s)

= 1
ms + µ

. (2.9)

2.2.2 Properness
In the transfer function model, it is called strictly proper when degree of the denominator
polynomial d is greater than the degree of the numerator polynomial n (d > n). Also, if
d ≥ n, it is called proper, and if d < n, we call it improper (or non-proper).

Simply put, a proper system can be implemented in reality, while an improper system
cannot be implemented in reality. We explain this a little more.

The transfer function was obtained by Laplace transformation of the differential equation
2.1. From this, if the order of the numerator of the transfer function is greater than that of
the denominator, the time derivative of the input u will be included in the output y. For
example, consider an improparative system

y(s) = s2 + s + 1
s + 1

u(s), (2.10)

this can be transformed like

y(s) = su(s) + 1
s + 1

u(s). (2.11)

In this equation, the first term on the right-hand side is the cause of improperness. Here,
as mentioned in the previous subsection 2.2.1, the operation of multiplying by s in the s-
domain is the operation of differential in the time domain. However, differential is defined

ḟ(t) := lim
∆t→0

f(t + ∆t) − f(t)
∆t

, (2.12)

and this indicates we need the future information f(t + ∆t). Unfortunately, it seems to
be impossible to implement exact time differential in reality. I have not hear exciting
news which tells someone succeed to know his or her future correctly, at least at the time
I am writing this document. Anyway, this is the reason why we can’t implement improper
transfer function in real.

Nevertheless, there is no need to consider, for example, whether some transfer function
measured in KAGRA is proper or improper. In the case of a measured transfer function,
it is a real physical phenomenon, and therefore it is definitely proper.

On the other hand, if you design the controller for suspension or interferometer control
in a digital system, there is the case where it is not porper, so you should care the degree
of the denominator and numerator polynomials of the transfer function to be sure that it
is proper.

8

By the way, the “D” in PID control, which appears in Chapter 4, means derivative.
This means that it includes the derivative of the error (input to the controller), which
makes it impossible to implement strictly. However, PID control is widely used in practice.
This is because the derivative element is replaced by “a non-exact but almost derivative
element” (e.g., an approximate calculation such as numerical differentiation by a program).
Of course, this is not an exact derivative because it contains errors, but for practical use,
it is almost always sufficient.

2.2.3 Python script
When writing transfer functions in Python, we can use tf(num, den). Alternatively, the
transfer function can be written after defining the variable s. If you want to extract the
coefficients of the denominator and numerator polynomials, you can use methods such as
P.num or P.den. In this description, the elements can be extracted using tfdata because
the nested structure of the list makes it difficult to use in other programs.

1 # TF
2 from control . matlab import tf , tfdata
3

4 Np = [0, 1] # Numerator polynomial (coefficient)
5 Dp = [1 ,2 ,3] # Denominator polynomial (coefficient)
6

7 P = tf(Np ,Dp)
8

9 P1 = tf ([0 ,1] ,[1 ,2 ,3]) # same as P
10

11 s = tf(’s’)
12 P2 = 1 / (s**2 + 2*s + 3) # same as P
13

14 print (’P=’,P)
15 print (’P1=’,P1)
16 print (’P2=’,P2)
17

18 print (’denP =’,P.den) # example of extraction (array)
19

20 [[numP]] ,[[denP]] = tfdata (P) # example of extraction
21 print (’denP =’,denP)

Listing 2.1: Transfer Function

2.3 State-space equation
2.3.1 What is state-space equation?

The state-space equation is a first-order differential equation that uses matrices to represent
multiple higher-order differential equations, and is very useful for describing multi-input
and multi-output systems. It defines state variables and describes the relationship between
input → state → output.

9

State-space equation

ẋ(t) = Ax(t) + Bu(t) (2.13)

y(t) = Cx(t) + Du(t) (2.14)
,where x is state variable, u is input、y is output, and A, B, C, D are constant matrices,
and the equation 2.13 is called the state equation and 2.14 is called the output equation.

Here, the number of elements in the state variable x is the same as the number of ini-
tial conditions needed when solving the original differential equation. However, there are
degrees of freedom in how the state variables are chosen. Therefore, there are an infinite
number of state space models.

As an example of the state-space equation, consider the case of 2.1 as in last subsection
2.2.1. In this case, the equation of motion was mẍ(t) + µẋ(t) = f(t). So when we assume

x(t) =
[
x(t)
ẋ(t)

]
, u(t) = f(t), y(t) = z(t), (2.15)

input equation becomes

ẋ =
[
ẋ(t)
ẍ(t)

]
=
[

ẋ(t)
− µ

m ẋ(t) + 1
mu(t)

]

=
[
0 1
0 − µ

m

] [
x(t)
ẋ(t)

]
+
[

0
1
m

]
u(t)

=
[
0 1
0 − µ

m

]
x(t) +

[
0
1
m

]
u(t).

(2.16)

On the other hand, output equation is

y(t) =
[
1 0

] [x(t)
ẋ(t)

]
=
[
1 0

]
x(t). (2.17)

So we get

A =
[
0 1
0 − µ

m

]
, B =

[
0

− 1
m

]
, C =

[
1 0

]
, D = 0. (2.18)

In the following, unless otherwise mentioned, we consider a one-input, one-output system
(y = y, u = u).

2.3.2 Derivation of the ss equation
Just in case, we note the derivation of the state-space equations 2.13 and 2.14. We assume
p = d

dt and A(p) = pn + an−1p
n−1 + · · · + a1p + a0

B(p) = bmpm + bm−1p
m−1 + · · · + b1p + b0

(2.19)

10

then equation 2.1 will be A(p)y = B(p)u. Here, we introduce new variance v and divide

A(p)v = u, y = B(p)v. (2.20)

If we define n-order vector x as

x =

x1
x2
...

xn

 :=

v
pv
...

pn−1v

 , (2.21)

we get

ẋ = px =

pv
p2v

...
pnv

 =

x2
x3
...

−a0x1 − a1x2 − · · · − an−1xn + u

 , (2.22)

and
y = b0v + b1pv + · · · + bmpmv = b0x1 + b1x2 + · · · + bmxm+1. (2.23)

If we rewrite these using the matrix representation,ẋ = Ax + Bu

y = Cx
(2.24)

where

A =

0 1 0 · · · 0
...
... 0
0 · · · · · · 0 1

−a0 −a1 · · · · · · −an−1

, B =

0
0
...
0
0
1

, C =

[
b0 · · · bm 0 · · · 0

]
. (2.25)

Note that this is the case where m < n, and Du is added where m = n.

2.3.3 Python script
When we describe state-space in Python, we use ss(A, B, C, D). If you want to extract
matrices A, B, C, D, just use ssdata.

1 # State Space
2 from control . matlab import ss , ssdata
3

4 A = [[0 ,1] ,[-1 , -1]]
5 B = [[0] ,[1]]
6 C = [1 ,0]
7 D = [0]
8 P = ss(A,B,C,D)
9

11

10 sysA , sysB , sysC , sysD = ssdata (P) # example of extraction
11

12 print (P)
13 print ("A=",sysA)

Listing 2.2: State-Space Equation

2.4 Relationship between TF and SS
2.4.1 Transformation between TF and SS

As we have seen, the differential equation 2.1 describing a dynamical system can be trans-
formed into a transfer function or a state space model. In this section, we will discuss the
transformations between these two representation.

First, by Laplace transformation both sides of the state-space equation ẋ = Ax + Bu
with an initial value of 0, we obtain sx(s) = Ax(s)+Bu(s), which is (sI−A)x(s) = Bu(s),
that is

x(s) = (sI − A)−1Bu(s) (2.26)
Moreover, since y(s) = Cx(s) + Du(s),

P(s) = C(sI − A)−1B + D. (2.27)

Like this, for a state-space, which is defined by matrices A, B, C, D, the transfer function
from input u to output y can be uniquely determined.

On the other hand, The transformation from transfer function to state-space
is not unique. This is because there are countless state-space models, depending on how
the state variables are defined. For example, for a regular matrix T ∈ Rn×n, given the
coordinate transformation x̄ = Tx, we obtain a state-space model

P :
 ˙̄x(t) = Āx̄(t) + B̄u(t)

y = C̄x̄ + Du(t)
(2.28)

Ā = TAT−1, B̄ = TB, C̄ = CT−1 (2.29)
with a new state variable x̄. This is called an equivalent transformation.

Therefore, controllable and observable canonical forms are used to convert transfer func-
tions to state space, which will be described in Chapter 4 (maybe).

2.4.2 Python script
We use tf2ss or ss2tf to realize these transformation in Python. The controllability and
observability in the code below will be discussed in detail in Chapter 4.

12

1 # conversion
2 from control . matlab import tf , ss , tf2ss , ss2tf
3 from control import canonical_form
4

5 P = tf ([0 ,1] ,[1 ,1 ,1])
6

7 Pss = tf2ss (P) # TF to SS
8 Ptf = ss2tf (Pss) # SS to TF
9

10 Pr , Tr = canonical_form (Pss ,form=’reachable ’) # reachable (= controllable if linear continuous -
time system)

11 Po , To = canonical_form (Pss ,form=’observable ’) # observable
12

13 print (Pr)
14 print (Po)

Listing 2.3: Transformation between TF and SS

2.5 Block diagram
A block diagram is often used to describe a system. For example, a block diagram of a
system S (y = Su) with input u and output y is shown in Figure 2.2. In this case, the
direction of the arrow corresponds to the direction of the signal flow.

Su y

Figure 2.2: Block diagram

2.5.1 Series, parallel and feedback

S1 S2

Figure 2.3: Series coupling

When two systems are arranged in series and the output of one system is combined to
become the input of the other system as shown in Figure 2.3, this is called series coupling.
For example, if y = S1u and z = S2y are series-coupled, z = S2 · S1u, so the entire system
is

S = S2 · S1. (2.30)
If S1 and S2 are linear and one-input and one-output, they can be reordered to form

S = S1 · S2, (2.31)

but not if they are nonlinear or multi-input and multi-output.

13

S1

S2

+

+

Figure 2.4: Parallel coupling

When two systems are placed in parallel and are coupled so that their outputs are added
together with the inputs in common as shown in Figure 2.4, it is called parallel coupling.
The black circles are draw points, indicating that the original and drawn signals are the
same. On the other hand, the white circle is the additive point, which means that the two
signals are added together. Here, y1 = S1u and y2 = S2u are combined in parallel, and y1
and y2 are added together, so y = y1 + y2 = S1u + S2u = (S1 + S2)u. Therefore, the entire
system is

S = S1 + S2. (2.32)

S1

S2

r

+
y

−

Figure 2.5: Feedback coupling

Furthermore, when two systems are placed side by side and their outputs are combined
to become inputs to each other as shown in Figure 2.5, it is called feedback coupling. In
the case of Figure 2.5,

y = S1u = S1(r − z) = S1(r − S2y) = S1r − S1S2y (2.33)

(1 + S1S2)y = S1r, (2.34)
so we get

y = S1

(1 + S1S2)
r. (2.35)

Therefore, the whole system becomes

S = S1

(1 + S1S2)
. (2.36)

14

2.5.2 Python script
The Python scripts for series coupling, parallel coupling, and feedback coupling are as
follows. Note that since Python does not automatically commute, function minreal is
used to make it an irreducible transfer function.

1 # Block Diagram
2 from control . matlab import tf , series , parallel , feedback
3

4 S1 = tf ([0 ,1] ,[1 ,1])
5 S2 = tf ([1 ,1] ,[1 ,1 ,1])
6

7 # series
8 Ss = series (S1 , S2) # same as S = S2 * S1
9 print (’Ss=’, Ss. minreal ()) #　irreducible form

10

11 # parallel
12 Sp = parallel (S1 , S2) # same as S = S2 + S1
13 print (’Sp=’, Sp. minreal ()) #　irreducible form
14

15 # feedback
16 Sf = feedback (S1 , S2) # same as S = S1 / (1+ S1 * S2)
17 S = S1 / (1+ S1*S2)
18 print (’Sf=’, Sf. minreal ()) #　irreducible form

Listing 2.4: Block Diagram

15

C
ha

pt
er 3

BEHAVIOR OF PLANT

In this chapter, we will discuss how to examine the characteristics of a plant by adding
inputs and observing the outputs. In this chapter and thereafter, the functions described
in 1.3.2 are used.

3.1 Time response
In the following, we mainly consider the behavior of the output when a step input

u(t) =
1 (t ≥ 0)

0 (t < 0)
(3.1)

is added (step response), and also consider first-order and second-order lag systems (most
actual plant are higher-order lag systems, but can be approximated by first-order and
second-order lag systems).

Also, as you can see in the following list, we can calculate the step response by using the
function step in the form y,t=step(sys,Td) and so on. Note that sys and Td represent
the transfer function or state-space model and simulation time respectively, and the model
output response y and time t are the return values.

3.1.1 First-order lag system
As for ball movement shown Figure 2.1, we know its TF is

P = 1
ms + µ

=
1
µ

1 + m
µ s

. (3.2)

16

Here, we assume K = 1
µ and T = m

µ , then we get

P(s) = K

1 + Ts
. (3.3)

A system expressed in this form is called first-order lag system, where K is called
gain and T is called time constant. In particular, the time constant is a parameter that
determines the quick response (speed of response).

3.1.1.1 Python script
For example, if we want to calculate the step response when T = 0.5, K = 1, we compile
the code below, and get Figure 3.1.

1 # First Order Lag System
2 import matplotlib . pyplot as plt
3 import numpy as np
4 from control . matlab import tf , step
5

6 T, K = 0.5 , 1 # time constant & gain
7 P1 = tf ([0 ,K],[T ,1]) # 1st order lag system
8

9 y, t = step(P1 , np. arange (0 ,5 ,0.01)) # step response
10

11 fig , ax = plt. subplots ()
12 ax.plot(t,y)
13 plot_set (ax ,’t’,’y’)
14

15 #plt. savefig (’1 st_order_lag ’,dpi =300)

Listing 3.1: Step response of 1st-order lag system

Figure 3.1: Step response of 1st-order lag system

Thus, the output starts from an initial value of 0 and gradually increases, reaching 1.0 in
about 3 seconds. Also, y = 0.632 at t = 0.5, and this time is the time constant (the time
when the output reaches 63.2% of its steady-state value).

17

In addition, to examine how the response changes when the time constant T is changed,
the following code is executed to obtain Figure 3.2. This shows that the response becomes
faster when the time constant is decreased.

1 # First Order Lag System - change T
2 fig , ax = plt. subplots ()
3

4 Tp = [1 ,0.5 ,0.1] # change T
5

6 for i in range (len(Tp)):
7 y,t = step(tf ([0 ,K],[Tp[i] ,1]) ,np. arange (0 ,5 ,0.01))
8 ax.plot(t,y, label =f’T={ Tp[i]} ’)
9

10 plot_set (ax ,’t’,’y’,’best ’)
11

12 #plt. savefig (’1 st_order_lag_changeT ’,dpi =300)

Listing 3.2: Step response of 1st-order lag system（change T）

Figure 3.2: Step response of 1st-order lag system（change T）

On the other hand, when the following code with different gain K is executed, Figure
3.3 is obtained. From this, it can be seen that the steady-state value increases as the gain
is increased.

1 # First Order Lag System - change K
2 fig , ax = plt. subplots ()
3

4 Kp = [1 ,2 ,3] # change K
5

6 for i in range (len(Kp)):
7 y,t = step(tf ([0 , Kp[i]] ,[T ,1]) ,np. arange (0 ,5 ,0.01))
8 ax.plot(t,y, label =f’K={ Kp[i]} ’)
9

10 plot_set (ax ,’t’,’y’,’best ’)
11

12 #plt. savefig (’1 st_order_lag_changeK ’,dpi =300)

Listing 3.3: 1st-order lag system（change K）

18

Figure 3.3: 1st-order lag system（change K）

To explain the above in relation to the motion of a ball, when a certain force is applied
to a ball, the ball that starts moving will eventually move at a certain speed. At this time,
the ball moves faster when its mass is smaller, corresponding to the smaller value of T = m

µ .
Also, the smaller the friction, the longer it takes for the ball to settle at a certain speed,
and the greater the final speed (Figure 3.3). This corresponds to a larger T = m

µ and a
larger K = 1

µ .

3.1.1.2 calculation of time response
The following is an explanation of the calculations performed in the Python code above.
The output y(s) of the plant P is represented by y(s) = Pu(s). Considering the step input,
u(s) = 1

s , so the output is y(s) = P(s)
s . Therefore, the inverse Laplace transform of this to

obtain the time response is

y(t) = L−1[y(s)] = L−1
[
P(s)1

s

]
. (3.4)

For 1st-order lag system, since the output is

y(s) = K

1 + Ts

1
s

= K

(
1
s

− T

1 + Ts

)
= K

1
s

− 1
s + 1

T

,

 (3.5)

so the inverse Laplace transform of this is

y(t) = K
(

1 + e− 1
T t
)

. (3.6)

The plot of this is Figure 3.1 in next subsection.

19

3.1.2 Second-order lag system

Figure 3.4: RLC circuits

As an example of a second-order lag system, consider the RLC circuit shown in Figure 3.4.
Let vin be the voltage applied to the circuit, i(t) be the current flowing in the circuit, and
vout(t) be the voltage at both ends of the capacitor, which is

vin(t) = L
d
dt

i(t) + Ri(t) + 1
C

∫ t

0
i(τ)dτ, (3.7)

from Ohm’s law.　 If the output is

y(t) = vout(t) = 1
C

∫ t

0
i(τ)dτ, (3.8)

and the input is
u(t) = vin(t), (3.9)

then
LCÿ(t) + RCẏ(t) + y(t) = u(t), (3.10)

since Cẏ = i(t). Laplace transforming this is

CLs2y(s) + CRsy(s) + y(s) = u(s), (3.11)

so TF from input to output is

P(s) = y(s)
u(s)

= 1
CLs2 + CRs + 1

. (3.12)

This can be transformed into

P(s) = 1
CLs2 + CRs + 1

=
1

CL

s2 + R
L s + 1

CL

, (3.13)

and if we set
K = 1, ωn =

√
1

CL
, ζ = R

s

√
C

L
= R

2Lωn
, (3.14)

we get

P(s) = Kω2
n

s2 + 2ζωns + ω2
n

(3.15)

20

The system expressed in this form is called second-order lag system, where ζ is the
damping coefficient and ωn is the natural angular frequency.

3.1.2.1 Python script
If you want to examine the step response of a second-order lag system in Python, you can
use the following code. Also, when you run this code, you will get Figure 3.5.

1 # Second Order Lag System
2 from control . matlab import tf , step
3

4 zeta , omega_n = 0.4 , 5 # & attenuation coefficient eigen angular frequency
5 P2 = tf ([0 , omega_n **2] ,[1 ,2* zeta*omega_n , omega_n **2])
6 y, t = step(P2 ,np. arange (0 ,5 ,0.01))
7

8 fig , ax = plt. subplots ()
9 ax.plot(t,y)

10 plot_set (ax ,’t’,’y’)
11

12 #plt. savefig (’2 nd_order_lag ’,dpi =300)

Listing 3.4: Step response of 2nd-order lag system

Figure 3.5: Step response of 2nd-order lag system

Thus, the output starts with an initial value of 0, gradually increases, takes a maximum
value of ymax around T = 0.685, and then converges to 1. The difference between the
maximum value and the final value (1.25 − 1 = 0.25 in this case) is called overshoot.
Overshoot does not occur in the first-order lag system, but it may occur in some cases in
the second-order lag system.

In addition, to examine how the behavior changes when the damping coefficient ζ
changes, the following code is executed to obtain Figure 3.6.

1 # Second Order Lag System - change zeta
2 fig , ax = plt. subplots ()
3

4 zetap = [1 ,0.7 ,0.4 ,0 , -0.05] # change zeta

21

5

6 for i in range (len(zetap)):
7 P2 = tf ([0 , omega_n **2] ,[1 ,2* zetap [i]* omega_n , omega_n **2])
8 y,t = step(P2 ,np. arange (0 ,5 ,0.01))
9

10 ax.plot(t,y, label =f’$\ zeta$ ={ zetap [i]} ’)
11

12 ax. set_ylim (-1, 3)
13

14 plot_set (ax ,’t’,’y’,’best ’)
15

16 #plt. savefig (’2 nd_order_lag_changeZeta ’,dpi =300)

Listing 3.5: Step response of 2nd-order lag system (change ζ)

Figure 3.6: Step response of 2nd-order lag system (change ζ)

This indicates that the magnitude of the overshoot increases as the value of ζ decreases.
Furthermore, when ζ = 0, it continues to oscillate and does not converge to a constant

value, and when ζ = 0.05, it is seen to diverge. Thus, ζ is a parameter that determines the
damping property, converging without oscillation when ζ ≥ 1, converging with oscillation
when 0 < ζ < 1, and diverging when ζ < 0.

Next, considering the case where the natural angular frequency is varied, the following
code is executed to obtain Figure 3.7.

1 # Second Order Lag System - change omega
2 fig , ax = plt. subplots ()
3

4 omega_np = [1 ,5 ,10] # change omega
5

6 for i in range (len(omega_np)):
7 P2 = tf ([0 , omega_np [i]**2] ,[1 ,2* zeta* omega_np [i], omega_np [i]**2])
8 y,t = step(P2 ,np. arange (0 ,5 ,0.01))
9

10 ax.plot(t,y, label =f’$\ omega$ ={ omega_np [i]} ’)
11

12 plot_set (ax ,’t’,’y’,’best ’)
13

14 #plt. savefig (’2 nd_order_lag_changeOmega ’,dpi =300)

Listing 3.6: Step response of 2nd-order lag system (change ωn)

22

Figure 3.7: Step response of 2nd-order lag system (change ωn)

From this, it can be seen that the response becomes faster as ωn is increased. In other
words, the natural angular frequency ωn is a parameter that determines the quick response
in the same way as the time constant T in the case of a first-order delay system.

To explain the above in relation to the RLC circuit, when a certain voltage is applied to
the RLC circuit, current flows through the circuit and charge accumulates in the capacitor.
Gradually, the current stops flowing and the voltage at both ends of the capacitor eventually
converges to 1. However, when a coil is present, electromagnetic induction generates a
counter electromotive force (in a direction that prevents the current from increasing or
decreasing), and the greater the inductance of the coil, the stronger the magnitude of the
electromotive force. As a result, the increase in the voltage at both ends of the capacitor
may be delayed, or the voltage may temporarily exceed the steady-state value of 1. Here,
since

ωn = 1√
CL

, (3.16)

the delay of increase in the voltage at both ends of the capacitor corresponds to a slower
rise as L increases. Also, since

ζ = R
√

C

2
√

L
, (3.17)

the fact that the voltage temporarily exceeds the steady-state value of 1 corresponds to the
fact that the response becomes more oscillatory as L increases.

23

3.1.2.2 Calculation of time response
Here, we explain the calculation performed in the Python code above: the step response
of a second-order lag system is

y(s) = Kω2
n

s2 + 2ωns + ω2
n

1
s

= Kω2
n

s(s + ωn)2 , (3.18)

when ζ = 1, which, when partially fractionalized, becomes

y(s) = K

(
1
s

− 1
s + ωn

− ωn

(s + ωn)2

)
. (3.19)

By inverse　 Laplace transforming this, we can get

y(t) = K
(
1 − e−ωnt − ωnte−ωnt

)
. (3.20)

From this we see that y(0) = 0, y(∞) = K (Figure 3.5). Also, since y(t) approaches K
exponentially, no overshoot occurs at this time.

On the other hand, when ζ ̸= 1, we can get

y(s) = Kω2
n

s2 + 2ζωns + ω2
n

1
s

= Kω2
n

s(s − p1)(s − p2)
, (3.21)

where p1, p2 = (−ζ ±
√

ζ2 − 1)ωn. This can be decomposed into partial fractions

y(s) = Kω2
n

p1p2

(
1
s

+ p2

(p1 − p2)
− p1

(p1 − p2)(s − p2)

)
(3.22)

so if we perdform inverse Laplace transformation, we get

y(t) = Kω2
n

p1p2

(
1 + p2

p1 − p2
ep1t − p1

p1 − p2
ep2t

)
. (3.23)

Moreover, submitting p1p2 = ω2
n, p1 − p2 = 2ωn

√
ζ2 − 1, we get

y(t) = K

(
1 − ζ +

√
ζ2 − 1

2
√

ζ2 − 1
ep1t + ζ −

√
ζ2 − 1

2
√

ζ2 − 1
ep2t

)
. (3.24)

Of these, p1, p2 = (−ζ ±
√

ζ2 − 1)ωn becomes negative real numbers when ζ > 1, so y(t)
approaches exponentially to y(∞) = K and no overshoot occurs.

Since p1, p2 = −ζωn ± jωn

√
1 − ζ2) when ζ < |1|, Euler’s formula ejθ = cos θ + j sin θ

y(t) = K

(
1 − e−ζωnt cos ω̄nt − 1√

1 − ζ2 e−ζωnt sin ω̄nt

)
, (3.25)

where ω̄n = ωn

√
1 − ζ2. In this case, the cos, sin causes oscillatory behavior. We can also

see that the exponential part of the function eventually converges to K since it becomes
zero over time.

24

Moreover, calculating the time derivative to find the maximum value of y, namely ymax,
is

ẏ(t) = Kωn√
1 − ζ2 e−ζωnt sin ω̄nt, (3.26)

so we know that y takes the maximum value when

t = Tp = π

ω̄n
= π

ωn

√
1 − ζ2 . (3.27)

The value at this time is

ymax = y(Tp) = K(1 + e−ζωnTP), (3.28)

so the overshoot is
ymax − y(∞) = Ke−ζωnTP . (3.29)

At last, when ζ = 0,
y(t) = K(1 − cos ωnt). (3.30)

Since the exponential element is eliminated, it becomes a sustained oscillation with ampli-
tude K.

3.1.3 Time response in ss model
Let us consider the time response in a state-space model. Since the state-space model can
take into account the effect of initial values on output, consider the behavior of ẋ(t) = Ax(t)
with input u = 0.

To obtain the initial value response, use the initial function, such as x, t = initial(sys,
Td, X0). Among the arguments, sys, Td is the same as in the step function, and X0 is the
initial state. This may be omitted if the initial state is 0. The return value x,t represents
the response and time of the state, respectively.

Now, for the system given in

A =
[

0 1
−4 −5

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
, D =

[
0
0

]
, (3.31)

the following code is executed to examine the response, resulting in Figure 3.8.
1 # Response in SS model
2 import matplotlib . pyplot as plt
3 import numpy as np
4 from control . matlab import ss , step , initial , lsim
5

6 A = [[0 ,1] ,[-4 , -5]]
7 B = [[0] ,[1]]
8 C = np.eye (2)
9 D = np. zeros ([2 ,1])

10 P = ss(A, B, C, D)
11

12 Td = np. arange (0 ,5 ,0.01)
13 X0 = [-0.3 ,0.4]
14 x,t = initial (P,Td ,X0)

25

15

16 fig , ax = plt. subplots ()
17 ax.plot(t,x[: ,0] , label =’x_1 ’)
18 ax.plot(t,x[: ,1] , label =’x_2 ’)
19 plot_set (ax ,’t’,’x’,’best ’)
20

21 #plt. savefig (’ response_in_SSmodel ’,dpi =300)

Listing 3.7: Time responce in ss model (initial response)

Figure 3.8: Time responce in ss model (initial response)

The two lines are there because state x =
[
x1 x2

]⊤
is two-dimensional, starting from their

respective initial values and eventually converging to 0 in both cases.
Since we now assume u = 0 for the input, the differential equation is ẋ(t) = Ax(t), and

we can find this solution. Then, Laplace transforming both sides of this equation yields

sx(s) − x(0) = Ax(s). (3.32)

Therefore, since it is
x(s) = (sI − A)−1x(0), (3.33)

it becomes
x(t) = L−1

[
(sI − A)−1

]
x(0). (3.34)

However, I is a unit matrix. If we rewrite this equation using the state transition matrix
(matrix exponential function) eAt, the solution of the state equation with zero input is

x(t) = eAtx(0). (3.35)

The state transition matrix can be calculated by hand, but that is tedious, so it can be
obtained using Python as follows.

1 # Calculation of State Transition Matrix
2 import sympy as sp
3 import numpy as np

26

4 from scipy . linalg import expm
5

6 sp. init_printing ()
7 s = sp. Symbol (’s’)
8 t = sp. Symbol (’t’, positive =True)
9

10 A = np. array ([[0 ,1] ,[-4 , -5]])
11

12 G = s*sp.eye (2) -A
13

14 exp_At = sp. inverse_laplace_transform (sp. simplify (G.inv ()), s, t)
15

16 t = 5 # when you want to know the value at certain time
17 expm(A*5)

Listing 3.8: Calculation of state transition matrix

Next, consider the case where there is an input. In this case, the equation of state is
ẋ(t) = Ax(t) +Bu(t). Let x(t) = eAtz(t) be a candidate solution (z(0) = x(0)). Here, the
time derivative of x(t) = eAtz(t) is

ẋ(t) = AeAtz(t) + eAtż(t) = Ax(t) + eAtż(t). (3.36)

Therefore, to make this agree with the original differential equation, we only need to find
z(t) that satisfies

eAtż(t) = Bu(t). (3.37)
Therefore, integrating both sides of

ż(t) = e−AtBu(t), (3.38)

yields
z(t) = z(0) +

∫ t

0
e−AτBu(τ)dτ. (3.39)

Therefore, the solution of the equation of state with input is

x(t) = eAtz(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ. (3.40)

The first term on the right side of this equation is called the zero input response and
the second term is called the zero state response. For example, if the initial values are
x(0) =

[
0 0

]⊤
and the input is u(t) = 1 (t ≥ 0) (step response), the response (zero state

response)
x(t) =

∫ t

0
eA(t−τ)Bdτ, (3.41)

is considered and the following code is executed to obtain Figure 3.9.
1 # Zero State Response in SS model
2 Td = np. arange (0 ,5 ,0.01)
3 x, t = step(P, Td)
4

5 fig , ax = plt. subplots ()
6 ax.plot(t,x[: ,0] , label =’x_1 ’)
7 ax.plot(t,x[: ,1] , label =’x_2 ’)
8 plot_set (ax ,’t’,’x’,’best ’)
9

10 #plt. savefig (’ zero_state_responce ’,dpi =300)

Listing 3.9: zero state response

27

Figure 3.9: zero state response

If we want to check the time response of the expression 3.40, you can use the lsim
function as shown in the code below, and obtain the figure 3.10 when executed.

1 # Time Responce of SS model
2 Ud = 1*(Td >=0) # step input
3 X0 = [-0.3 , 0.4]
4

5 xst , t = step(P, Td) # zero state response
6 xin , _ = initial (P, Td , X0) # zero input response
7 x, _, _ = lsim(P, Ud , Td , X0)
8

9 fig , ax = plt. subplots (1,2, figsize =(9 , 3.4))
10 for i in [0, 1]:
11 ax[i]. plot(t, x[:,i], label =’response ’)
12 ax[i]. plot(t, xst [:,i], label =’zero state ’)
13 ax[i]. plot(t, xin [:,i], label =’zero input ’)
14 ax[i]. set_ylim (-0.4 , 0.6)
15

16

17 plot_set (ax [0] , ’t’, ’x_1 ’)
18 plot_set (ax [1] , ’t’, ’x_2 ’, ’best ’)
19 fig. tight_layout ()
20

21 #plt. savefig (’ time_response_of_SSmodel ’,dpi =300)

Listing 3.10: Time response in ss model

Figure 3.10: Time response in ss model

28

3.2 Stability and system behavior
3.2.1 Stability

When examining the step response of first-order and second-order lag systems, the output
response sometimes diverged depending on how the parameters were chosen. This means
that the system is unstable. In this section, we discuss the stability of the system in terms
of input-output stability and asymptotic stability.

3.2.1.1 Input-output stability
Input-output stability (or Bounded-Input-Bounded-Output: BIBO stability) means that
when a bounded signal is used as input, the output is also bounded. Note that a bounded
signal, defined as

|u(t)| ≤ M < ∞, ∀t, ∃M > 0, (3.42)
, is a signal that does not diverge to infinity.

If this stability is not maintained, that is, if the system becomes unstable, it can be found
by examining the poles of the transfer function (the roots of the denominator polynomial
that P(s) = ∞). For example, the following code shows the poles of each transfer function.

1 # Poles
2 from control . matlab import tf , tfdata
3

4 P1 = tf ([0 ,1] ,[1 ,1])
5 P2 = tf ([0 ,1] ,[-1 ,1])
6

7 for i in [P1 , P2]:
8 print (’poles :’,i. poles ())

Listing 3.11: example of tf for stability

Then, the poles of P1 and P2 are −1 + 0j and +1 + 0j, respectively. Of these, P1, whose
real part of the pole is negative, is stable, while P2, whose real part of the pole is positive,
is unstable. In general, it is known that

Poles and stability
The necessary and sufficient condition for a system to be input-output stable is The
real parts of all the poles of the master function are negative. In other words,
a system is input-output stable if the poles of the transfer function are in the left
half-plane. A pole with a negative real part is called a stable pole, and one without a
negative real part is called an unstable pole.

3.2.1.2 Asymptotic stability
In the previous subsection, we discussed the stability of the transfer function. On the other
hand, the stability of the state-space model can be obtained by examining the eigenvalues

29

of the A matrix of the system.
Amatrix and stability

A necessary and sufficient condition for the system to be stable is that the real parts
of all eigenvalues of matrix A are negative.

Stability here is defined as
lim
t→∞

x(t) = 0, (3.43)

which is called asymptotic stability. In particular, if the state-space model is asymptot-
ically stable, the output is bounded for bounded inputs (input-output stable). However,
depending on the properties of the matrices B,C, the transfer function C(sI−A)−1B may
have a common factor between the numerator and denominator polynomials, resulting in
an irreducible division.

The fact that the system ẋ = Ax is asymptotically stable is equivalent to the fact
that for any matrix Q = Q⊤ > 0, there exists a unique matrix P = P⊤ > 0 satisfying
Lyapunov’s equation

PA + A⊤P = −Q. (3.44)
This is called Lyapunov’s stability theorem. For example, executing

1 # Lyapunov Stable
2 from control . matlab import lyap
3

4 A = np. array ([[0 ,1] ,[-4 , -5]])
5

6 Q = np.eye (2)
7 P = lyap(A.T, Q)
8

9 np. linalg . eigvals (P)

Listing 3.12: Lyapunov’s stability theorem

yields array([1.1403882, 0.1096118]), so P is positively defined, and from this we know
that the system is asymptotically stable. Note that lyap(M, Q) is a function to find the
solution of MP + PM⊤ = −Q.

Another way to visually show how the convergence is achieved when starting from ar-
bitrary initial values is the phase portrait shown in Figure 3.11. This is obtained by the
following code.

1 # Phase Portrait
2 import matplotlib . pyplot as plt
3 import numpy as np
4

5 w = 1.5 # step size
6 Y, X = np. mgrid [-w:w:100j, -w:w:100j]
7

8 A = np. array ([[0 ,1] ,[-4 , -5]])
9 s,v = np. linalg .eig(A) # eigen vector and eigen values

10

11 U = A[0 ,0]*X + A[0 ,1]*Y # calculation for component of xdot
12 V = A[1 ,0]*X + A[1 ,1]*Y # calculation for component of xdot
13

14 t = np. arange (-1.5 ,1.5 ,0.01)
15

16 fig , ax = plt. subplots ()

30

17

18 ax. set_ylim (-1.5 , 1.5)
19

20 ax. streamplot (X, Y, U, V, density =0.7 , color =’k’)
21

22 if s.imag [0] == 0 and s.imag [1] == 0:
23 ax.plot(t, (v[1 ,0]/v[0 ,0])*t)
24 ax.plot(t, (v[1 ,1]/v[0 ,1])*t)
25

26 plot_set (ax , ’x_1 ’, ’x_2 ’)
27

28 #plt. savefig (’ phase_portrait ’,dpi =300)

Listing 3.13: Phase portrait

Figure 3.11: Phase portrait

In this figure, the blue and orange lines plot the eigenvectors corresponding to the
eigenvalues -1 and -4 of the matrix A, respectively. Eigenvectors are those that satisfy
ẋ = Ax = λx, so once on the straight line, the state transitions along this line (called the
invariant space).

3.2.2 Relationship between poles and system
behavior
Having seen the relationship between the poles of the transfer function and the eigenvalues
of the A matrix of the state-space model and stability, we now consider the relationship
between them and the behavior of the system.

First, the further the pole is to the left of the left half-plane, i.e., to the negative side,
the faster the response. For example, in the case of a first-order lag system, the pole is
s = − 1

T , corresponding to the fact that the smaller T is, the faster the response is. In the
case of a second-order lag system, the pole is s = −ζωn ± ωn

√
ζ2 − 1, corresponding to a

faster response when ωn is larger.

31

Next, when the imaginary part of the pole is non-zero, it becomes oscillatory, and
the larger the imaginary part, the faster the oscillation. For example, in the case of a
first-order lag system, the poles are not oscillatory because they have only real parts. In
the case of a second-order lag system, when the absolute value of ζ is less than 1, since
s = −ζωn ± jωn

√
1 − ζ2, the closer ζ is to 0, the larger the imaginary part becomes and

the more oscillatory it becomes.

3.3 Frequency response
When the transfer function is P(s), the output of the controlled object is expressed as
y(s) = P(s)u(s), so the response of the input signal with u(s) = 1 is the transfer function.
This signal u(s) = 1 is called an impulse input (this is a superfunction called Dirac’s delta
function δ(t), which has a magnitude of ∞ when t = 0 and is 0 at other times). In other
words, the Laplace transform of the response when an impulse input is added is called the
transfer function.

Therefore, if we want to examine the characteristics of a plant, you can add an impulse
input and examine the response. In reality, however, it is difficult to add an impulse
input. It is very difficult to add an input of infinite magnitude for a single moment.
Therefore, the impulse input is expressed as a linear sum of different signals. For example,
it can be viewed as a collection of multiple sine or cosine waves of different frequencies
(mathematically speaking, this corresponds to a Fourier transform). The following code
examines the output response when a sinusoidal signal is added.

1 # Response for sin input
2 import matplotlib . pyplot as plt
3 import numpy as np
4 from control . matlab import tf , lsim
5

6 fig , ax = plt. subplots (2,2, figsize =(9 , 5))
7

8 zeta = 0.7
9 omega_n = 5

10 P = tf ([0 , omega_n **2] ,[1 ,2* zeta*omega_n , omega_n **2]) # second order lag system
11

12 freq = [2, 5, 10, 20]
13 Td = np. arange (0, 5, 0.01)
14

15 for i in range (2):
16 for j in range (2):
17 u = np.sin(freq [2*i+j]* Td)
18 y, t, _ = lsim(P, u, Td , 0)
19

20 ax[i,j]. plot(t, u, label =’u’)
21 ax[i,j]. plot(t, y, label =’y’)
22 plot_set (ax[i,j], ’t’, ’u, y’)
23

24 ax [0 ,0]. legend ()
25

26 #plt. savefig (’ response_to_sin_input ’,dpi =300)

Listing 3.14: Response to sine wave input

32

Figure 3.12: Response to sine wave input

From this, it can be seen that when a sinusoidal signal is added, the output also becomes
a sinusoidal signal in steady state. Also, when the frequency of the sine wave is low, the
amplitude of the input and output are almost the same (high gain), and as the frequency
is increased, the amplitude becomes smaller (low gain). Furthermore, we can also see that
the phase is delayed.

In summary, when the input signal is u(t) = A sin(ωt), the output is y(t) = B(ω) sin(ωt+
ϕ(ω)) and the amplitude ratio B(ω)

A and phase ϕ(ω) depend on the frequency.
Therefore, as shown in Figure 3.13, the gain (amplitude ratio of input/output signals)

and phase are plotted against frequency to visually express the characteristics of the plant.
For each frequency, the gain diagram shows the amplitude ratio in dB as 20 log10

B(ω)
A , and

the phase diagram plots the phase [deg]. As described in the following section, the Bode
diagram can be drawn in Python using the bode function.

Here we explain how the Bode diagram is drawn, i.e., the calculation of the frequency
response. For example, when a sine wave u(t) = sin(ωt) with an amplitude of 1 is input
to a stable system, the output after a sufficient time is y(t) = B(ω) sin(ωt + ϕ(ω)). In this
case, P(jω) expressed as

P(jω) = B(ω)ejϕ(ω), (3.45)
using the amplitude B(ω) and phase ϕ is called the frequency transfer function. This is
obtained by substituting jω for s in the transfer function P(s) (P(s) and P(jω) are the
Laplace transform and Fourier transform of the impulse response respectively). Since P(jω)
is a complex function, when P(jω) = α(ω)+jβ(ω), its absolute value and declination angle
are

|P(jω)| =
√

α(ω)2 + β(ω)2, ∠P(jω) = tan−1
(

β(ω)
α(ω)

)
. (3.46)

The Bode diagram is a vector locus drawn by calculating these values when ω is varied.

33

3.3.1 First-order lag system
To draw a Bode diagram for a first-order lag system when the time constant T is varied,
the following code is executed to obtain Fig. 3.13.

1 # Bode Plot for 1st order lag system
2 from control . matlab import tf , bode , logspace , mag2db
3

4 fig , ax = plt. subplots (2,1, figsize =(5 , 5))
5

6 K = 1
7 T = [1, 0.5 , 0.1]
8

9 for i in range (len(T)):
10 P = tf ([0 ,K],[T[i] ,1])
11 mag , phase , w = bode(P, logspace (-2 ,2) , plot= False)
12

13 pltargs = {’label ’:f’T={T[i]} ’}
14 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
15 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
16

17 bodeplot_set (ax , 3, 3)
18

19 #plt. savefig (’ bodeplot_1st_order_lag ’,dpi =300)

Listing 3.15: Bode plot of first-order lag system

Figure 3.13: Bode plot of first-order lag system

The gain plot shows that the gain is around 0 dB in the low frequency range and decreases
as the frequency increases. In other words, when the frequency of the input signal is low,

34

the amplitude of the output signal is almost equal to the amplitude of the input signal,
and when the frequency is high, the amplitude of the output signal is small. Also, as the
time constant decreases, the frequency at which the gain decreases increases.

The frequency transfer function of the first-order delay system is

P(jω) = 1
1 + jωT

, (3.47)

when K = 1. In this case, the gain and phase are

|P(jω)| = 1√
1 + (ωT)2

(3.48)

∠P(jω) = − tan−1 ωT (3.49)
This mean that |P(jω)| = 1, ∠P(jω) = 0 at low frequency (small ω). This is graphed in
Figure 3.13.

3.3.2 Second-order lag system
To draw Bode plots for a second-order lag system when the damping constant ζ and
eigenangular frequency ωn are varied, the following code is executed to obtain Figures 3.14
and 3.15.

1 # Bode Plot for 2nd order lag system
2 from control . matlab import tf , bode , logspace , mag2db
3

4 fig , ax = plt. subplots (2,1, figsize =(5 , 5))
5

6 zeta = [1 ,0.7 ,0.4]
7 omega_n = 1
8

9 for i in range (len(zeta)):
10 P = tf ([0 , omega_n **2] ,[1 ,2* zeta[i]* omega_n , omega_n **2])
11 mag , phase , w = bode(P, logspace (-2 ,2) , plot= False)
12

13 pltargs = {’label ’:f’$\\ zeta$ ={ zeta[i]} ’}
14 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
15 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
16

17 bodeplot_set (ax , 3, 3)
18

19 #plt. savefig (’ bodeplot_2nd_order_lag_zeta ’,dpi =300)
20

21 fig , ax2 = plt. subplots (2,1, figsize =(5 , 5))
22

23 zetap = 1
24 omega_np = [1 ,5 ,10]
25

26 for i in range (len(omega_np)):
27 P = tf ([0 , omega_np [i]**2] ,[1 ,2* zetap * omega_np [i], omega_np [i]**2])
28 mag , phase , w = bode(P, logspace (-2 ,2) , plot= False)
29

30 pltargs = {’label ’:f’$\\ omega_n$ ={ omega_np [i]} ’}
31 ax2 [0]. semilogx (w, mag2db (mag), ** pltargs)
32 ax2 [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
33

34 bodeplot_set (ax2 , 3, 3)

35

35

36 #plt. savefig (’ bodeplot_2nd_order_lag_omega ’,dpi =300)

Listing 3.16: Bode plot of second-order lag system

Figure 3.14: Bode plot of first-order lag system (change ζ)

36

Figure 3.15: Bode plot of first-order lag system (change ωn)

The figure shows that when ζ is varied, decreasing the value of ζ results in a portion of
the signal that is larger than 0 dB. This means that the amplitude of the output signal is
larger than that of the input signal, corresponding to the occurrence of overshoot. It can
also be seen that as ωn is decreased, the frequency at which the gain decreases becomes
lower.

The frequenct transfer function of second-order lag system is

P(jω) = ω2
n

ω2
n − ω2 + 2jζωnω

, (3.50)

when K = 1, so

|P(jω)| = ω2
n√

(ω2
n − ω2)2 + (2ζωnω)2

, (3.51)

∠P(jω) = − tan−1 2ζωnω

ω2
n − ω2 . (3.52)

In this case, |P(jω)| = 1 (0 dB) and ∠P(jω) = 0 deg when the frequency is low (ω is
sufficiently small). Also, when ω = ωn, |P(jω)| = 1

2ζ and ∠P(jω) = −90 deg. Furthermore,
if the frequency is high (ω is large enough), |P(jω)| = 1/(ω/ωn)2 (0 dB), ∠P(jω) =
−180 deg. Figures 3.14 and 3.15 show these graphs.

37

The maximum value of the gain is called the peak gain. Since the frequency is ((ω2
n −

ω2)2 + (2ζωnω)2, which is the minimum ω, if we find a solution to

d
dω

{
(ω2

n − ω2)2 + (2ζωnω)2
}

= −4ω(ω2
n − ω2) + 8ζ2ω2

nω

= 4ω(ω2 − ω2
n(1 − 2ζ2))

= 0,

(3.53)

we get ω = 0, ±ωn

√
1 − 2ζ2. Therefore, when 0 ≤ ζ < 1

2 , the value of |P(jω)| is the peak
gain Mp since it takes the minimum value at ω = ωn

√
1 − 2ζ2 and

|P(jω)| = ω2
n√

(ω2
n − ω2

n(1 − 2ζ2))2 + (2ζω2
n

√
1 − 2ζ2)2

= 1√
(1 − (1 − 2ζ2))2 + 4ζ2(1 − 2ζ2)

= 1
2ζ

√
1 − ζ2

(3.54)

On the other hand, when ζ ≥ 1√
2 , the minimum value is taken at ω = 0 and |P(jω)| = 1.

In other words, the peak gain at this time is Mp = 1.

38

C
ha

pt
er 4

SYSTEM DESIGN (CL)

4.1 Control specification for closed loop
In this chapter, we mainly consider to design closed loop (feedback loop) to plant P like
Figure 4.1. In the following, K is the controller, r is the reference, u is the control input,
d is the disturbance, y is the output, and e is the deviation, unless otherwise mentioned.

K P
r

+
e u

+

d

+ y

−

Figure 4.1: Closed loop

In this case, the target is to design K so that the closed-loop system has desirable
characteristics. Here we explain the stability, time response, and frequency response char-
acteristics which is the evaluation of this purpose.

4.1.1 Stability
In a closed-loop system such as the one shown in Figure 4.1, the external inputs are r and
d, and the outputs are y and u. Therefore, the stability of the closed-loop system must be
considered in four ways: from r to y & u and from d to y & u (since a divergent control
input cannot be implemented in reality, the response to u is also considered).

39

Since
y(s) = P(s)(d(s) + u(s)) = P(s)d(s) + P(s)K(s)(r(s) − y(s)), (4.1)

outout y is
y(s) = P(s)K(s)

1 + P(s)K(s)
r(s) + P(s)

1 + P(s)K(s)
d(s). (4.2)

Also, since

u(s) = K(s)(r(s) − y(s)) = K(s)r(s) − P(s)K(s)(d(s) + u(s)), (4.3)

control input u is

u(s) = K(s)
1 + P(s)K(s)

r(s) − P(s)K(s)
1 + P(s)K(s)

d(s). (4.4)

So, stability of feedback system is shown below:
Stability

A necessary and sufficient condition for the stability of a feedback control system is
that all four transfer functions of

Gyr(s) = P(s)K(s)
1 + P(s)K(s)

Gyd(s) = P(s)
1 + P(s)K(s)

Gur(s) = K(s)
1 + P(s)K(s)

Gud(s) = − P(s)K(s)
1 + P(s)K(s)

(4.5)

are input-output stable (3.2.1.1). This is called internal stability.

Also, when
P(s) = NP(s)

DP(s)
, K = NK(s)

DK(s)
, (4.6)

the denominator polynomial of the four transfer functions is

ϕ(s) = DP(s)DK(s) + NP(s)NK(s). (4.7)

If the roots of this characteristic polynomial are stable, then the system is internally stable.
Note that if there is no unstable pole-zero cancellation (i.e., the unstable pole of the control
target cancels the unstable zero of the controller) between P(s) and K(s), the closed loop
system is internally stable if Gyr(s) is input-output stable.

40

4.1.2 Time response
When designing a controller to make y reach r as fast as possible, evaluation items in-
clude the speed of response (quick response), the attenuation of oscillation (damping),
and the magnitude of deviation (steady-state characteristics). In this section, we consider
evaluating these in terms of time response.

Figure 4.2: Time response

An example of the step response of the transfer function from r to y is shown in Fig.
4.2. The oscillating part is called the transient characteristic, which can be quantitatively
evaluated in terms of rise time, settling time, overshoot, and overshoot time. Rise time
refers to the time it takes for the step response to reach a value between 10% and 90%
of the steady-state value y∞, and settling time refers to the time it takes for the step
response to settle within a certain range of steady-state values (for example, 5% settling
time). Overshoot is the difference between the maximum value and the steady-state value
when the step response exceeds the steady-state value, which is the value of ymax −y∞, and
overshoot time is the time until overshoot is reached. Of these, the rise time, settling time,
and overshoot time are indicators for quick response, while the settling time and overshoot
are indicators for attenuation.

In Figure 4.2, the steady-state characteristics are quantitatively evaluated by the steady-
state deviation. This represents the difference between the target value and the steady-state
value.

In Python, for example, stepinfo(P, SettlingTimeThreshold=0.05) gives the values
of various performance indicators related to step response.

41

4.1.3 Frequency response
The quick-response, damping, or steady-state characteristics of a closed-loop system can
also be evaluated by the frequency response.

Figure 4.3: Frequency response

An example of a gain diagram for the transfer function from r to y is shown in Figure
4.3. In this diagram, the bandwidth and peak gain are indices for transient response
characteristics. The bandwidth is the frequency at which the gain becomes 1√

2
(=3 dB lower) of the DC gain, and the larger the bandwidth, the faster the response.

The peak gain is the maximum amplitude ratio of the input to the output signal,

Mp = max
ω≥0

|G(jω)|. (4.8)

In the case of Figure 4.3, when an input near the peak gain frequency (resonance frequency)
is applied, the output is larger than the input. This corresponds to an oscillatory time
response, which is an indicator of attenuation.

The DC gain (low-frequency gain of ω → 0) is an indicator regarding the steady-state
characteristics. For example, if the DC gain is 0 dB, the steady-state deviation is 0 in the
step response.

4.1.4 Summary
Here, we summarize the control specification.

Stability : keep closed loop stable

Quick response : In the step response of Gyr, make rise time and settling time small.
In the gain plot of Gyr, make bandwidth ωbw sufficiently large.

Damping : In the step response of Gyr, make overshoot and settling time small.
In the gain plot of Gyr, make the peak gain Mp small.

42

Steady-state characteristics : In the step response of Gyr,
make the steady-state deviation small.
In the gain plot of Gyr, keep the DC gain nearly 0 dB.

4.2 PID control
For K in the Fig. 4.1, we consider PID controller in this section. This is widely used
controller, it consists of Proportional, Integral, and Derivative operations.

In PID control, the control input is determined by the linear sum of each operation
with respect to the deviation (difference between target value and output). For example,
consider angle control of a vertical drive arm as shown in Fig. 4.4, where the output y(t)
is the angle of the arm and the control input u(t) is the torque to be applied.

Figure 4.4: Vertical drive arm

In this case, we consider the difference e(t) = r(t) − y(t) between the current angle
and the target value. First, P control uses kp times this deviation e(t) as control input.
However, with only this type of control, the control input and the torque due to gravity
are in balance, and the target angle is never reached. Therefore, by adding the integral of
the deviation to the control input, the control input that exceeds the torque due to gravity
is generated. However, if the influence of P control or I control is made too large, the
response may become oscillatory. Therefore, a derivative value of the deviation is added
to the control input. This differential information predicts a little bit of the future for the
arm’s movement and prevents oscillatory behavior from occurring.

Since this alone is difficult to understand, we will consider it below by looking at indi-
vidual Python codes and concrete diagrams. Note that if PID control is expressed as an
expression, it is

u(t) = kP e(t) + kI

∫ t

0
e(τ)dτ + kDė(t), (4.9)

43

and when Laplace transformed, it is

u(t) = kP e(s) + kI

s
e(s) + kDse(s) = kDs2 + kP s + kI

s
e(s), (4.10)

where kP , kI , and kD are the proportional, integral, and derivative gains, respectively (Fig.
4.5).

kP

kI

kD

1
s

s

P
r

+

e

+
+

+

u

+

d

+ y

−

Figure 4.5: PID control

4.2.1 P control
P control is shown in Figure 4.6 with K = kp.

kP P
r

+
e u

+

d

+ y

−

Figure 4.6: P control

We will consider the vertically driven arm in Figure 4.4 in the following sections, so we
will derive the transfer function first. Since the transfer function describes a linear system,
here we assume that the arm moves in the neighborhood of y(t) = 0 (linear approximation),
the equation of motion is

Jÿ(t) = u(t) − Mgly(t) − µẏ(t), (4.11)

which can be Laplace transformed and rearranged to

Js2y(s) + µsy(s) + Mgly(s) = u(s), (4.12)

so the transfer function is

P = y(s)
u(s)

= 1
Js2 + µs + Mgl

. (4.13)

This model is described in Python as follows.

44

1 # Params for Vertical Drive Arm
2 from control . matlab import tf
3

4 g = 9.81 # gravitational acceleration
5 l = 0.2 # arm length
6 M = 0.5 # arm mass
7 mu = 1.5e -2 # coefficient of viscous friction
8 J = 1.0e -2 # moment of inertia
9

10 P = tf ([0 ,1] ,[J,mu ,M*g*l])
11

12 ref = 30 # reference angle
13 \ label { list4 .1}

Listing 4.1: Model of vertically driven arm

Here, the following code is executed to obtain the step response and Bode plot when the
proportional gain kp is varied, as shown in Figures 4.7 and 4.8.

1 # P Controller
2 ## Step Responce
3 import matplotlib . pyplot as plt
4 import numpy as np
5 from control . matlab import tf , feedback , step , bode , logspace , mag2db
6

7 kp = (0.5 , 1, 2) # P gain
8

9 fig , ax = plt. subplots ()
10

11 for i in range (len(kp)):
12 K = tf ([0 , kp[i]], [0, 1]) # P controller
13 Gyr = feedback (P*K, 1) # closed loop (see block diagram section in chap2)
14 y,t = step(Gyr , np. arange (0, 2, 0.01))
15

16 pltargs = {’label ’: f’k_P ={ kp[i]} ’}
17 ax.plot(t, y*ref , ** pltargs)
18

19 ax. axhline (ref , color =’k’, linewidth =0.5)
20 plot_set (ax , ’t’, ’y’, ’best ’)
21

22 #plt. savefig (’ Pcontroller_step ’,dpi =300)
23

24 ## Bode Plot
25 fig , ax = plt. subplots (2 ,1)
26

27 for i in range (len(kp)):
28 K = tf ([0 , kp[i]], [0, 1]) # P controller
29 Gyr = feedback (P*K, 1) # closed loop
30 mag , phase , w = bode(Gyr , logspace (-1 ,2 ,1000) , plot= False)
31

32 pltargs = {’label ’: f’k_P ={ kp[i]} ’}
33 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
34 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
35

36 bodeplot_set (ax , ’lower left ’)
37

38 #plt. savefig (’ Pcontroller_bode ’,dpi =300)

Listing 4.2: P controller

45

Figure 4.7: Step response of closed-loop system when using P control system

Figure 4.8: Bode plot of closed-loop system when using P control system

First, from Fig. 4.7, it can be seen that the output does not reach the target value of 30
deg in P control. However, by increasing the proportional gain, the difference between the
target values becomes smaller, the rise time becomes faster, and the period of oscillation
becomes shorter.

The Bode diagram in Figure 4.8 shows that increasing the proportional gain increases
the low-frequency gain and the steady-state deviation of the step response becomes smaller.
It also shows that the bandwidth and peak gains are also increased, which means that the
response speed becomes faster but more oscillatory.

The above should also be confirmed in the formula. Since

P(s) = 1
Js2 + µs + Mgl

, (4.14)

46

and
K(s) = kP , (4.15)

closed loop system can be written

Gyr(s) = P(s)K(s)
1 + P(s)K(s)

= kP

Js2 + µs + Mgl + kP
. (4.16)

If we map this to the standard form of the second-order lag system

Gyr(s) = Kω2

s2 + 2ζωns + ω2
n

, (4.17)

we get

ωn =
√

Mgl + kP

J
, ζ = µ

2
√

J(Mgl + kP)
, K = kP

Mgl + kP
. (4.18)

From this, it can be seen that the larger the proportional gain kP is, the larger ωn becomes,
and thus the faster the response becomes. However, since ωn is also included in the de-
nominator of ζ, ζ becomes smaller at the same time, and the response becomes oscillatory.
Therefore, it is not possible to improve both quick-response and damping at the same time.
Also, from the final value theorem, y(∞) = lims→0 Gyr(s) = K, but since K ̸= 1, the target
value 1 is never reached. As kP is increased, K approaches 1, but it cannot be infinitely
large (input becomes excessive), so a steady deviation always remains in P control.

4.2.2 PD control
We saw that when kP was increased in P control, the response became oscillatory. There-
fore, an action of differentiation is added to reduce the oscillation. This is the PD control
shown in Fig. 4.9, where K = kDs + kP .

kP

kDs

P
r

+

e

+
+

u

+

d

+ y

−

Figure 4.9: PD control

Execute the following code to obtain the step response and Bode diagram as shown in
Figures 4.10 and 4.11.

1 # PD Controller
2

3 ## Step Responce

47

4 kp = 2 # P gain
5 kd = (0, 0.1 , 0.2) # D gain
6

7 fig , ax = plt. subplots ()
8

9 for i in range (len(kd)):
10 K = tf ([kd[i], kp], [0, 1]) # PD controller
11 Gyr = feedback (P*K, 1) # closed loop
12 y,t = step(Gyr , np. arange (0, 2, 0.01))
13

14 pltargs = {’label ’: f’k_D ={ kd[i]} ’}
15 ax.plot(t, y*ref , ** pltargs)
16

17 ax. axhline (ref , color =’k’, linewidth =0.5)
18 plot_set (ax , ’t’, ’y’, ’best ’)
19

20 #plt. savefig (’ PDcontroller_step ’,dpi =300)
21

22 ## Bode Plot
23 fig , ax = plt. subplots (2 ,1)
24

25 for i in range (len(kd)):
26 K = tf ([kd[i], kp], [0, 1]) # PD controller
27 Gyr = feedback (P*K, 1) # closed loop
28 args = {’wrap_phase ’:True}
29 mag , phase , w = bode(Gyr , logspace (-1 ,2 ,1000) , plot=False , ** args)
30

31 pltargs = {’label ’: f’k_D ={ kd[i]} ’}
32 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
33 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
34

35 bodeplot_set (ax , ’lower left ’)
36

37 #plt. savefig (’ PDcontroller_bode ’,dpi =300)

Listing 4.3: PD controller

Figure 4.10: Step response of closed-loop system when using PD control system

48

Figure 4.11: Bode plot of closed-loop system when using PD control system

First, from Fig. 4.10, it can be seen that the vibration can be suppressed by adding
D control. However, the steady-state deviation does not become zero as in the case of P
control.

The Bode plot in Fig. 4.11 shows that as the differential gain is increased, the peak gain
becomes smaller and the bandwidth increases. This shows that oscillations are suppressed
and the rise time becomes a little faster. However, the DC gain remains unchanged and
the steady-state characteristics are not improved.

The above should also be confirmed in the formula. In the case of PD control,

K(s) = kP + kD, (4.19)

so the closed-loop system is

Gyr(s) = P(s)K(s)
1 + P(s)K(s)

= kDs + kP

Js2 + (µ + kD)s + Mgl + kP
. (4.20)

The poles of the closed-loop system are

s =
−(µ + kD) ±

√
(µ + kD)2 − 4J(Mgl + kP)

2J
. (4.21)

By adjusting kD and kP , the real and imaginary parts can be freely determined, respectively.
This means that both quick-response and damping can be improved at the same time.
However, since the value of Gyr(0) is the same as in the P control case, the steady-state
characteristics do not change, and steady-state deviations always remain in the PD control
case. Incidentally, D control uses the differential information of the deviation, but as
mentioned in 2.2.2, the exact differential cannot be implemented as a controller. For
example, in the case of PD control, the controller is kDs + kP , which is an improper. As it

49

is impossible to implement in the real world as it is, in practice, it is implemented in the
form of

K(s) = kD
s

1 + Tlps
+ kP , (4.22)

using an incomplete differentiator s
1+Tlps . This is a low-pass filter (first-order delay system)

added to the derivative and is proprietary. Noise is amplified by the derivative, but the
low-pass filter (1/Tlp: cutoff frequency) reduces the effect of noise.

4.2.3 PID control
The PID control described at the beginning of this section (Fig. 4.5) incorporates the
operation of integration to improve the steady-state characteristics. The following code is
executed to obtain the step response when the integral gain is changed while the propor-
tional gain and differential gain are fixed, as shown in Figures 4.12 and 4.13.

1 # PID Controller
2

3 ## Step Responce
4 kp = 2 # P gain
5 ki = (0, 5, 10) # I gain
6 kd = 0.1 # D gain
7

8 fig , ax = plt. subplots ()
9

10 for i in range (len(ki)):
11 K = tf ([kd , kp , ki[i]], [1, 0]) # PD controller
12 Gyr = feedback (P*K, 1) # closed loop
13 y,t = step(Gyr , np. arange (0, 2, 0.01))
14

15 pltargs = {’label ’: f’k_I ={ ki[i]} ’}
16 ax.plot(t, y*ref , ** pltargs)
17

18 ax. axhline (ref , color =’k’, linewidth =0.5)
19 plot_set (ax , ’t’, ’y’, ’best ’)
20

21 #plt. savefig (’ PIDcontroller_step ’,dpi =300)
22

23 ## Bode Plot
24 fig , ax = plt. subplots (2 ,1)
25

26 for i in range (len(ki)):
27 K = tf ([kd , kp , ki[i]], [1, 0]) # PD controller
28 Gyr = feedback (P*K, 1) # closed loop
29 args = {’wrap_phase ’:True}
30 mag , phase , w = bode(Gyr , logspace (-1 ,2 ,1000) , plot=False , ** args)
31

32 pltargs = {’label ’: f’k_I ={ ki[i]} ’}
33 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
34 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
35

36 bodeplot_set (ax , ’lower left ’)
37

38 #plt. savefig (’ PIDcontroller_bode ’,dpi =300)

Listing 4.4: PID controller

50

Figure 4.12: Step response of closed-loop system when using PID control system

Figure 4.13: Bode plot of a closed-loop system when using a PID control system

First, from Figure 4.12, we can see that the steady-state deviation becomes zero by I
control, and the larger kI is, the more oscillatory it becomes.

Also, from the Bode diagram in Fig. 4.13, we can see that the DC gain is 0 dB and the
peak gain is slightly larger. In other words, while the steady-state deviation is zero, the
larger the gain, the more oscillatory it becomes.

The above is also confirmed by the equation: In the case of PD control, since

K(s) = kDs2 + kP s + kI

s
, (4.23)

51

the closed-loop system is

Gyr(s) = P(s)K(s)
1 + P(s)K(s)

= kDs2 + kP s + kI

Js3 + (µ + kD)s2 + (Mgl + kP)s + kI
. (4.24)

In this case, Gyr(0) = 1, which means that the steady-state deviation is zero. Also, the
transfer function from the disturbance d to the output y is

Gyd(s) = P(s)
1 + P(s)K(s)

= s

Js3 + (µ + kD)s2 + (Mgl + kP)s + kI
(4.25)

and Gyr(0) = 0, which means that the steady-state deviation is 0 for a constant value
disturbance (step-like disturbance). Note that the disturbance suppression performance of
PID control can be found by executing the following code (Fig. 4.14, 4.15)

1 # PID Controller -- Disturbance Supression (Gyd)
2 ## Step Responce
3 kp = 2 # P gain
4 ki = (0, 5, 10) # I gain
5 kd = 0.1 # D gain
6

7 fig , ax = plt. subplots ()
8

9 for i in range (len(ki)):
10 K = tf ([kd , kp , ki[i]], [1, 0])
11 Gyd = feedback (P, K)
12 y, t = step(Gyd , np. arange (0, 2, 0.01))
13

14 pltargs = {’label ’: f’k_I ={ ki[i]} ’}
15 ax.plot(t, y, ** pltargs)
16

17 plot_set (ax , ’t’, ’y’, ’best ’)
18

19 plt. savefig (’PIDcontroller_Gyd_step ’,dpi =300)
20

21 ## Bode Plot
22 fig , ax = plt. subplots (2, 1)
23

24 for i in range (len(ki)):
25 K = tf ([kd , kp , ki[i]], [1, 0])
26 Gyd = feedback (P, K)
27 args = {’wrap_phase ’:True}
28 mag , phase , w = bode(Gyd , logspace (-1 ,2) , plot=False , ** args)
29

30 pltargs = {’label ’: f’k_I ={ ki[i]} ’}
31 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
32 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
33

34 bodeplot_set (ax , ’best ’)
35

36 #plt. savefig (’ PIDcontroller_Gyd_bode ’,dpi =300)

Listing 4.5: PID controller

52

Figure 4.14: Disturbance suppression performance of PID control

Figure 4.15: Disturbance suppression performance of PID control (Bode plot)

From this, increasing the integral gain causes the output to converge to zero, which
means that the disturbance is suppressed, i.e., the desired response is obtained. The Bode
diagram also shows that the low-frequency gain is −∞ dB, which means that low-frequency
disturbances are suppressed.

4.2.4 Improved PID control
When PID control is actually used, it is often in a modified form. For example, when the
target value changes in a step-like manner in PID control, the control input u(t) includes
an impulse component generated by the differentiator. To avoid this, PI-D control is used

53

in which the differentiator acts only on the output as shown in Figure 4.16. The expression
is

u(s) = kP e(s) + kI

s
e(s) − kDsy(s). (4.26)

kP

kI

kD

1
s

s

P
r

+

e

+
+

−

u

+

d

+ y

−

Figure 4.16: PI-D control

Since step-like signals are included in the input u(s) in P control, the input may reflect
kP times the output instead of kP times the deviation, as shown in Figure 4.17. This is
called I-PD control and is expressed as

u(s) = −kP y(s) + kI

s
e(s) − kDsy(s). (4.27)

kI

kP

kD

1
s

s

P
r

+

e

−
+

++

u

+

d

+ y

−

Figure 4.17: I-PD control

Now, in the case of PI-D control,

u(s) = kP s + kI

s
r(s) − kDs2 + kP s + kI

s
y(s)

= kDs2 + kP s + kI

s

(
kP s + kI

kDs2 + kP s + kI
r(s) − y(s)

)
= K1(s)(K2(s)r(s) − y(s))

(4.28)

54

where

K1(s) = kDs2 + kP s + kI

s

K2(s) = kP s + kI

kDs2 + kP s + kI

(4.29)

and K1(s) is a PID controller. Also, K2(s) is a second-order lag system, which can be inter-
preted as shaping the target value r with a second-order filter and performing PID control
using the shaped target value. In other words, PI-D control performs stabilization and
disturbance suppression by feedback control using the PID controller K1(s), and maintains
target value response performance by feedforward control using the target value filter K2.

Note that K1(s) is the same for I-PD control and is

K2(s) = kI

kDs2 + kP s + kI
. (4.30)

This is called two-degree-of-freedom control with feedback control and feed-forward control
added, and the improved PID control is called improved PID control. The following code
can now be executed to compare PID control with PI-D control (Figure 4.18) and I-PD
control (Figure 4.19) of the vertical drive arm.

1 # Improved PID
2 from control . matlab import tf , feedback , lsim
3

4 kp , ki , kd = 2, 10, 0.1
5 K1 = tf ([kd , kp , ki] ,[1 ,0]) # PID
6 K2 = tf ([kp , ki],[kd , kp , ki]) # PI -D
7 K3 = tf ([0 , ki],[kd , kp , ki]) # I-PD
8

9 Gyz = feedback (P*K1 , 1) # TF from z to y
10

11 Td = np. arange (0, 2, 0.01)
12 r = 1*(Td >0)
13

14 z, t, _ = lsim(K2 , r, Td , 0) # forming of referece with K2
15 z2 , t2 , _ = lsim(K3 , r, Td , 0)
16

17 fig , ax = plt. subplots (1, 2, figsize =(8.0 , 4.0))
18

19 y, _, _ = lsim(Gyz , r, Td , 0) # PID (z=r)
20 ax [0]. plot(t, r*ref)
21 ax [1]. plot(t, y*ref , label =’PID ’)
22

23 y, _, _ = lsim(Gyz , z, Td , 0) # PI -D
24 ax [0]. plot(t, z*ref)
25 ax [1]. plot(t, y*ref , label =’PI -D’)
26

27 ax [1]. axhline (ref , color =’k’, linewidth =0.5)
28

29 ax [1]. set_ylim =(0 ,50)
30

31 plot_set (ax [0] , ’t’, ’r’)
32 plot_set (ax [1] , ’t’, ’y’, ’lower right ’)
33

34 #plt. savefig (’ Improved_PIDcontroller_PI -D’,dpi =300)
35

36 fig , ax = plt. subplots (1, 2, figsize =(8.0 , 4.0))
37

55

38 y, _, _ = lsim(Gyz , r, Td , 0) # PID (z=r)
39 ax [0]. plot(t, r*ref)
40 ax [1]. plot(t, y*ref , label =’PID ’)
41

42 y, _, _ = lsim(Gyz , z2 , Td , 0) # PI -D
43 ax [0]. plot(t, z2*ref)
44 ax [1]. plot(t, y*ref , label =’I-PD ’)
45

46 ax [1]. axhline (ref , color =’k’, linewidth =0.5)
47

48 ax [1]. set_ylim =(0 ,50)
49

50 plot_set (ax [0] , ’t’, ’r’)
51 plot_set (ax [1] , ’t’, ’y’, ’lower right ’)
52

53 #plt. savefig (’ Improved_PIDcontroller_I -PD ’,dpi =300)

Listing 4.6: Improved PID control

Figure 4.18: Comparison of PID control and PI-D control

Figure 4.19: Comparison of PID control and I-PD control

The left figure in Fig. 4.18 is the signal z shaped by r and K2(s), and the right figure is
the output of the plant when it is taken as input. Although the target value is smoothed
by the target value filter K2, the output of the control target is also more oscillatory than
that of PID control because the target value is oscillatory.

56

Figure 4.19 shows that the oscillation of the signal shaped by K2(s) is suppressed, which
also suppresses the oscillation of the output of the plant. The difference between PI-D
control and I-PD control is that K2(s) includes or does not include zero points, respectively.

4.3 Gain tuning
4.3.1 Ultimate sensitivity method

One method for tuning PID gain is the ultimate sensitivity method. While this method
has the disadvantage that the actual device must be operated near the limit of instability
(ultimate sensitivity), it has the advantage that it does not require a model of the control
target.

In the ultimate sensitivity method, P control is first configured and the proportional
gain kP is increased. As the oscillation increases and a sustained oscillation is generated,
the proportional gain kP 0 and the period of the sustained oscillation T0 at that time are
investigated. Note that in an ideal first-order or second-order lag system, even if the
proportional gain is increased, sustained oscillation does not occur, but in an actual system,
there is dead time, and sustained oscillation is caused (which becomes unstable when the
gain is increased).

Then, the proportional gain kP , integral time TI , and derivative time TD are determined
using Table 4.1 and Table 4.2. Here, PID control is assumed to be

u(t) = kP

(
e(t) + 1

TI

∫ t

0
e(τ)dτ + TD

d
dt

e(t)
)

, (4.31)

and kI = kP

TI
, kD = kP TD.

kP TI TD

P control 0.5kP 0
PI control 0.45kP 0 0.83T0

PID control 0.6kP 0 0.5T0 0.125T0

Table 4.1: Ultimate sensitivity method

kP TI TD

No Overshoot 0.2kP 0 0.5T0 0.33T0

Table 4.2: Improvement of table 4.1

As an example, let us assume that the vertical drive arm (second-order lag system) of
list 4.1 has a minute dead time as the plant. Also, a first-order Padé approximation (a
rational function approximation of the dimensionless system e−hs) is used, and the dead

57

time is assumed to be 0.005. Applying P control with an appropriate proportional gain of
kP 0 = 2.9 as in the following code, we obtain Figure 4.20. Furthermore, Figure 4.21 is the
result of tuning the PID gain using the period of duration.

1 # Gain tuning with Ultimate Sensitivity Method
2

3 from control . matlab import tf , pade , feedback , step
4

5 num_delay , den_delay = pade (0.005 , 1) # dead time (Pad\UTF {00 E9} approximant)
6 Pdelay = P * tf(num_delay , den_delay)
7

8 kp0 = 2.9 # P gain
9 K = tf ([0 , kp0], [0 ,1]) # P controller

10 Gyr = feedback (Pdelay *K, 1) # closed loop
11 y, t = step(Gyr , np. arange (0, 2, 0.01))
12

13 fig , ax = plt. subplots ()
14 ax.plot(t, y*ref)
15 ax. axhline (ref , color =’k’, linewidth =0.5)
16 plot_set (ax , ’t’, ’y’)
17

18 #plt. savefig (’ sustained_oscillation ’,dpi =300)
19

20 kp = [0, 0]
21 ki = [0, 0]
22 kd = [0, 0]
23 Rule = [’’, ’’]
24

25 T0 = 0.3 # this value is periodic time of the sustained oscillation above
26

27 Rule [0] = ’Classic ’ # ultimate sensitivity method
28 kp [0] = 0.6 * kp0
29 ki [0] = kp [0] / (0.5 * T0)
30 kd [0] = kp [0] * (0.125 * T0)
31

32 Rule [1] = ’No Overshoot ’ # improved ultimate sensitivity method
33 kp [1] = 0.2 * kp0
34 ki [1] = kp [1] / (0.5 * T0)
35 kd [1] = kp [1] * (0.33 * T0)
36

37 fig , ax = plt. subplots ()
38

39 for i in range (2):
40 K = tf ([kd[i], kp[i], ki[i]], [1 ,0])
41 Gyr = feedback (Pdelay *K, 1)
42 y, t = step(Gyr , np. arange (0, 2, 0.01))
43

44 ax.plot(t, y*ref , label =Rule[i])
45

46 print (Rule[i])
47 print (’kP=’, kp[i])
48 print (’kI=’, ki[i])
49 print (’kD=’, kd[i])
50 print (’-------------’)
51

52 ax. axhline (ref , color =’k’, linewidth =0.5)
53 plot_set (ax , ’t’, ’y’, ’best ’)
54

55 #plt. savefig (’ gain_tuning ’,dpi =300)

Listing 4.7: Gain tuning

58

Figure 4.20: Sustained vibration

Figure 4.21: The result of gain tuning

Thus, it can be seen that the ultimate sensitivity method produces reasonably good
results and that the improved version does not have overshoot.

59

4.3.2 Model matching

Figure 4.22: Model matching

The model matching method, as shown in Figure 4.22, is to provide an appropriate nor-
mative model M(s) and match (or approach) the transfer function Gyr(s) from the target
value r to the output y to it. Binomial coefficient standard forms and Butterworth stan-
dard forms are often used for normative models. For example, in the case of a second-order
system, ζ = 1 and ζ = 1√

2 in

M(s) = ω2
n

s2 + 2ζωns + ω2
n

, (4.32)

respectively (Fig. 4.23).
In the case of the third-order system, (α1, α2) = (3, 3), (α1, α2) = (2, 2), and (α1, α2) =

(2.15, 1.75) for

M(s) = ω3
n

s3 + α2ζωns2 + α1ω2
ns + ω3

n

, (4.33)

are binomial coefficient standard form, Butterworth standard form, and ITAE minimum
standard form (which approximately minimizes the time weighted integral of the absolute
value of the deviation) respectively (Figure 4.24).

60

Figure 4.23: nominal model for second-order lag system

Figure 4.24: nominal model for third-order lag system

The model matching method finds the transfer function Gyr(s) from r to y and calculates
the Maclaurin expansion of 1

Gyr(s) and 1
M(s) . The PID gains are determined to match the

lower-order terms in that order.
For example, consider the model matching of a PI-D control system for a vertical drive

arm. The transfer function from r to y is

Gyr(s) = kP s + kI

Js3 + (µ + kD)s2 + (Mgl + kP)s + kI
, (4.34)

which is matched to the quadratic normative model M in 4.32. To find the Maclaurin
expansion of 1

Gyr(s) , we can run the following code.

61

1 # Maclaurin Expansion
2 import sympy as sp
3

4 s = sp. Symbol (’s’)
5 kp , kd , ki = sp. symbols (’k_p k_d k_i ’)
6 Mgl , mu , J = sp. symbols (’Mgl mu J’)
7 sp. init_printing ()
8

9 G = (kp*s + ki) / (J*s**3 + (mu+kd)*s**2 + (Mgl+kp)*s + ki)
10 sp. series (1/G, s, 0, 4)

Listing 4.8: Maclaurin expansion

From this, we get

1+s2
(

−MglkP

k2
I

+ kD

kI
+ µ

kI

)
+s3

(
J

kI
+ Mglk2

P

k3
I

+ kDkP

k2
I

− kP µ

k2
I

)
+ Mgls

kI
+O(s4), (4.35)

so
1

Gyr(s)
= 1 + Mgl

kI
s +

(
µ + kD

kI
− Mgl

kP

k2
I

)
s2 +

(
J

kI
− kP (µ + kD)

k2
I

+ Mgl
k2

P

k3
I

)
s3 + · · · .

(4.36)
On the other hand, 1

M(s) will be

1
M(s)

= 1 + 2ζ

ωn
s + 1

ω2
n

s2. (4.37)

Next, kP , kI , and kD are obtained using the following code to match the first, second, and
third order terms of s in 1

Gyr(s) and 1
M(s) .

1 # Model Matching
2 import sympy as sp
3

4 z, wn = sp. symbols (’zeta omega_n ’)
5 kp , kd , ki = sp. symbols (’k_p k_d k_i ’)
6 Mgl , mu , J = sp. symbols (’Mgl mu J’)
7 sp. init_printing ()
8

9 f1 = Mgl/ki - 2*z/wn
10 f2 = (mu+kd)/ki - Mgl*kp /(ki **2) - 1/(wn **2)
11 f3 = J/ki - kp *(mu+kd)/(ki **2) + Mgl*kp **2/(ki **3)
12

13 sp. solve ([f1 , f2 , f3],[kp , kd , ki])

Listing 4.9: Model mathcing

As a result, we get (
Jω2

n, 2Jωnζ + Mgl

2ωnζ
− µ,

Mglωn

2ζ

)
. (4.38)

From this,
kP = ω2

nJ, kI = ωnMgl

2ζ
, kD = 2ζωnJ + Mgl

2ζωn
− µ. (4.39)

Using this, the following code is executed to obtain Figure 4.25.
1 # Check of Gain Tuning with Model Matching
2 from control . matlab import tf , step
3

62

4 omega_n = 15
5 zeta = 1/ np.sqrt (2) # butterworth
6 Msys = tf ([0 , omega_n **2] ,[1 ,2* zeta*omega_n , omega_n **2]) # normative model
7

8 g = 9.81 # gravitational acceleration
9 l = 0.2 # arm length

10 M = 0.5 # arm mass
11 mu = 1.5e -2 # coefficient of viscous friction
12 J = 1.0e -2 # moment of inertia
13

14 ## model matching
15 kp = J* omega_n **2
16 ki = M*g*l* omega_n /(2* zeta)
17 kd = 2*J* omega_n *zeta + M*g*l/(2* omega_n *zeta) - mu
18 Gyr = tf ([kp , ki],[J, mu+kd , M*g*l+kp , ki])
19

20 yM , tM = step(Msys , np. arange (0, 2, 0.01))
21 y, t = step(Gyr , np. arange (0, 2, 0.01))
22

23 fig , ax = plt. subplots ()
24 ax.plot(tM , yM*ref , label =’M’)
25 ax.plot(t, y*ref , label =’Gyr ’, linestyle =’--’)
26 plot_set (ax , ’t’, ’y’, ’best ’)
27

28 #plt. savefig (’ gain_tuning_with_model_mathcing ’,dpi =300)

Listing 4.10: Gain tuning with model matching

Figure 4.25: Gain tuning with model matching

This shows that the response of the closed-loop system Gyr(s) perfectly matches the
response of the normative model M(s).

4.4 State feedback control
This time, a controller is designed for the system described by the state-space model ẋ =
Ax + Bu. Here, all states are assumed to be observable by sensors, etc., and the observed

63

information is used to determine the control input. Also, consider a state feedback

u = Fx, (4.40)

as shown in Figure 4.26.

ẋ = Ax + Bu

F

Figure 4.26: State feedback control

This uses information on the state x to determine the control input u. In this case,
there are two methods for designing feedback gain F : the pole placement method and the
optimal regulator.

4.4.1 Pole placement
When state feedback control u = Fx is applied to the system ẋ = Ax+Bu, the closed-loop
system becomes

ẋ = (A + BF)x. (4.41)
Since the system is stable if the real parts of all eigenvalues of the matrix A + BF are
negative, F is designed to be so.

In the pole assignment method, the eigenvalues of A + BF with negative real parts are
first specified for the number of states. In the case of Python, you can use F = -acker(A,
B, p) to obtain F so that the eigenvalues of A+BF are the ones you specified. The reason
for the negative sign is that the return value is F such that the eigenvalues of A−BF are
the specified poles.

Based on the above, the following code can be executed to perform state feedback control
using the pole placement method, and Figure 4.27 is obtained.

1 # State Feedback Control -- pole placement method
2 from control . matlab import ss , acker , initial
3

4 A = ’0 1; -4 5’
5 B = ’0; 1’
6 C = ’1 0; 0 1’
7 D = ’0; 0’
8 P = ss(A, B, C, D)
9

10 regulator_poles = [-1, -1]
11 F = -acker (P.A, P.B, regulator_poles)
12

13 Acl = P.A + P.B@F
14 Pfb = ss(Acl , P.B, P.C, P.D)
15

16 Td = np. arange (0, 5, 0.01)
17 X0 = [-0.3 , 0.4]
18 x, t = initial (Pfb , Td , X0)

64

19

20 fig , ax = plt. subplots ()
21 ax.plot(t, x[: ,0] , label =’x_1 ’)
22 ax.plot(t, x[: ,1] , label =’x_2 ’)
23 plot_set (ax , ’t’, ’x’, ’best ’)
24

25 #plt. savefig (’ SFC_PolePlacement ’,dpi =300)

Listing 4.11: Pole placement

Figure 4.27: Pole placement

This shows that the state x converges to 0.

4.4.2 Controllability and observability
In designing of state feedback gains by pole placement, the system must be controllable
(the controller can be freely designed). In general, controllability is very important when
constructing a control system, so we discuss it here. In addition, observability, which is
necessary for the design of observers that will (probably) appear later, is often explained
as a set, so it is described here. Note that we assume u = u for this section, since the case
other than one input is also valid.

4.4.2.1 Controllability
A system is said to be controllable if the input u(t) can be transferred from any initial value
x(0) to any x(tz) in any finite time tz by control, otherwise it is said to be uncontrollable.
Note that controllability is determined only by the matrices A and B (independent of
output). In addition, the necessary and sufficient conditions for being controllable are as
follows.

65

Necessary and sufficient conditions for the system to be controllable
It is to be full row rank

rank Uc = n, (4.42)
where

Uc =
[
B AB A2B · · · An−1B

]
. (4.43)

Here, Uc(n × (nm)) is called controllability matrix.

First, let’s consider the necessary conditions.

e−Atzx(tz) − x(0) =
∫ tz

0
e−AτBuτ)dτ, (4.44)

is a solution to the state equation. Assume that there exists an arbitrary initial state x(0),
a finite time tz, u(t) for the state x(tz). Note that e−Aτ is a state transition matrix,

e−Aτ = I − Aτ + 1
2!
A2τ 2 + · · · + 1

n!
An(−τ)n + · · · . (4.45)

Using Cayley-Hamilton’s theorem

An + anA
n−1 + · · · + a2A + a1I = 0, (4.46)

for the matrix A, the state transition matrix e−Aτ can be expressed as an n − 1 degree
polynomial

e−Aτ = q0(τ)I + q1(τ)A + · · · + qn−1(τ)An−1, (4.47)
of the matrix A. So, we get

e−Atzx(tz) − x(0) =
∫ tz

0

{
q0(τ)I + q1(τ)A + · · · + qn−1(τ)An−1

}
Bu(τ)dτ

=
[
B AB · · · An−1B

] ∫ tz

0

q0(τ)
q1(τ)

...
qn−1(τ)

u(τ)dτ

= Uc

∫ tz

0

q0(τ)
q1(τ)

...
qn−1(τ)

u(τ)dτ.

(4.48)

For there to be u(t) for any initial state x(0), finite time tz, and state x(tz), there must be
at least n linearly independent nm column vectors in Uc. That is,

rank Uc = n. (4.49)

This is necessary condition.

66

On the other hand, sufficiency, i.e., rankUc = n, holds when there exists an arbitrary
initial state x(0), a finite time tz, and an input u(t) for the state x(tz). Let

Wc(t) ≡
∫ t

0
e−AτBBT e−AT τdτ (4.50)

be the controllable Gram matrix (controllable Gramian). If this matrix is regular, then by
determining the input as

u(t) = −BT e−AT tWc(tz)−1
[
x(0) − e−Atzx(tz)

]
, (4.51)

for any initial state x(0), finite time tz, and state x(tz), we can make the state at time tz

like x(tz), as

eAtzx(0) +
∫ tz

0
eA(tz−τ)Bu(τ)dτ = eAtz

{
x(0) +

∫ tz

0
e−AτB(−Be−AT τ)dτWc(tz)−1

[
x(0) − e−Atzx(tz)

]}
= eAtz

{
x(0) − Wc(tz)Wc(tz)−1

[
x(0) − e−Atzx(tz)

]}
= x(tz)

(4.52)

from the solution equation of the state equation. Therefore, we can show that Wc(t) is
regular.

Assuming that the matrix Wc(t) is not regular for some t, there exists a vector y ̸= 0

such that
yTWc(t)y = 0, (4.53)

and since

0 = yTWc(t)y =
∫ t

0
yT e−AτBBT e−AT τydτ =

∫ t

0

∣∣∣yT e−AτB
∣∣∣ dτ, (4.54)

so
yT e−AτB = 0 (4.55)

holds for any τ . Therefore, we have

yTB = 0, (4.56)

with τ = 0, and
yTAB = 0, (4.57)

when yT e−AτB is differentiated by τ and

yTB = yTAB = yTA2B = · · · = yTAn−1B = 0, (4.58)

repeating this differentiation. Therefore,

yT
[
B AB · · · An−1B

]
= 0 (4.59)

are obtained, which contradicts the assumption that rankUc = n. Therefore, the matrix
Wc(t) is regular for any t (sufficient condition).

67

4.4.2.2 Observability
A system is said to be observable when the components of all state variables of the system
at the start of observation can be known by observing the output of the system for a finite
time, and is said to be unobservable when this is not the case. The system is observable if
the initial state x(0) can be uniquely obtained from the input u(t) and output y(t) from
the start of observation to the finite time tz. If the system is observable, the transition of
all states x(t) in a finite time interval 0 ≤ t ≤ tz can be calculated from the transition of
input u(t) and output y(t) in that time interval. Note that observability assumes that the
inputs are known and is determined only by the matrices A and C (not by B or D). In
addition, the necessary and sufficient conditions for being observable are as follows.

Necessary and sufficient conditions for the system to be observable

rank Uo = n, (4.60)
for an observability matrixUo((ln) × n)

Uo =

C

CA

CA2

...
CAn−1

(4.61)

i.e., it has column full rank

Consider sufficiency conditions. Assume that the system is not observable, i.e., the initial
state x(0) cannot be uniquely obtained from the input u(t) and output y(t) from the start
of observation to a finite time tz. Let xA(0)、xB(0) (xA(0) ̸= xB(0)) be the initial state
obtained at this time, then

y(t) = CeAtxA(0) + C
∫ t

0
eA(t−τ)Bu(τ)dτ + Du(t) (4.62)

y(t) = CeAtxB(0) + C
∫ t

0
eA(t−τ)Bu(τ)dτ + Du(t) (4.63)

is valid. Since
CeAt {xA(0) − xB(0)} = 0 (4.64)

from these, z ≡ xA(0) − xB(0), then

CeAtz = 0 (4.65)

is true for any t. Therefore,
Cz = 0 (4.66)

with t = 0, and
CAz = 0 (4.67)

68

when CeAtz is differentiated by t, and

Cz = CAz = CA2z = · · · = CAn−1z = 0, (4.68)

repeated this differentiation are true. So, we get
C

CA
...

CAn−1

 z = Moz = 0. (4.69)

Here, since xA(0) ̸= xB(0), we know z ̸= 0, but it must be

rankMo < n, (4.70)

for it to be true (sufficient condition). Necessary condition can be traced backwards.
The following code can be used to check controllability and observability in Python.

1 from control . matlab import ss , ctrb , obsv
2

3 A = ’0 1; -4 5’
4 B = ’0; 1’
5 C = ’1 0’
6 P = ss(A, B, C, 0)
7

8 Uc = ctrb(P.A, P.B)
9 Uo = obsv(P.A, P.C)

10

11 print (’Uc =\n’,Uc)
12 print (’det(Uc)=’, np. linalg .det(Uc))
13 print (’rank(Uc)=’, np. linalg . matrix_rank (Uc))
14

15 print (’Uo =\n’,Uo)
16 print (’det(Uo)=’, np. linalg .det(Uo))
17 print (’rank(Uo)=’, np. linalg . matrix_rank (Uo))

Listing 4.12: Controllability and observability

4.4.3 Optimal regulator
Although the pole placement method can be used to determine the state feedback gain,
there are some problems such as

• Increasing the real part of the eigenvalues to the negative side speeds up the response,
while increasing the feedback gain F and increasing the input.

• Some state variables may appear with a large amplitude of swing.

, so the selection of poles can be difficult. Therefore, we consider a state feedback gain that
minimizes these values by setting evaluation indices related to the dynamic characteristics
of the system and input energy (LQ optimal control problem).

69

LQ optimal control problem
The controller that minimizes the quadratic form of the evaluation function

J =
∫ ∞

0
x(t)Qx(t) + u(t)⊤Ru(t)dt (4.71)

for Q = Q⊤ > 0 and R = R⊤ > 0 is obtained in the form u = Foptx where Fopt is the
value

Fopt = −R−1B⊤P . (4.72)
However, P = P⊤ > 0 satisfies Riccati equation

A⊤P + PA − PBR−1B⊤P + Q = 0. (4.73)

It is the only positive definite symmetric solution. Also, the minimum value of J is
x(0)⊤Px(0).

The state feedback control obtained by optimizing the evaluation function is called the
optimal regulator. In the optimal control problem, the input u from initial time to infinite
time that minimizes the evaluation function J is sought, and the optimal control input is
given in the form of a state feedback control. Also, Q is often set in a diagonal matrix like

Q =
[
q1 0
0 q2

]
(4.74)

At this time,
x(t)⊤Qx(t) = q1x1(t)2 + q2x2(t)2, (4.75)

so x1 should be set so that q1 > q2 if x2 is to converge to 0 more quickly. On the other
hand, R becomes a scalar when u is one input, and a larger R gives a feedback gain F

where the input does not become too large. to design an optimal regulator in Python,
simply run the following code, which will produce Figure 4.28 is obtained.

1 # Optimal Regulator
2 from control . matlab import lqr , care
3

4 Q = np.diag ([100 , 1])
5 R = 1
6

7 F, X, E = lqr(P.A, P.B, Q, R)
8 F = -F
9

10 print (’-- Feedback Gain --’)
11 print (F)
12 print (-(1/R)*P.B.T@X)
13 print (’-- Poles of Closed Loop ’)
14 print (E)
15 print (np. linalg . eigvals (P.A+P.B@F))
16

17 Acl = P.A + P.B*F
18 Pfb = ss(Acl , P.B, P.C, P.D)
19

20 Td = np. arange (0, 5, 0.01)
21 x0 = [-0.3 , 0.4]
22 x, t = initial (Pfb , Td , x0)

70

23

24 fig , ax = plt. subplots ()
25 ax.plot(t, x[:, 0], label = ’x_1 ’)
26 ax.plot(t, x[:, 1], label = ’x_2 ’)
27 plot_set (ax , ’t’, ’x’, ’best ’)
28

29 #plt. savefig (’ SFC_OptimalRegulator ’,dpi =300)

Listing 4.13: Optimal regulator

Figure 4.28: State feedback control with optimal regulator

4.4.4 Integral servo system

Figure 4.29: State feedback control in the presence of constant disturbance

When a constant disturbance d is added to the control symmetry, the state does not
converge to zero (Fig. 4.29). To solve this problem, an integral servo system is sought.

71

This system integrates the difference between the output y and the target value r and adds
it to the input, denoted

u(t) = Fx(t) + G
∫ t

0
(r − y(τ))dτ. (4.76)

Now consider the case where a constant disturbance d is added to the control target, i.e.,ẋ(t) = Ax(t) + B(u(t) + d)
y(t) = Cx(t)

(4.77)

If the state of the integrator is w, then ẇ(t) = r − y(t) = r − Cx(t). Using this to expand
the control system and setting r = 0 yields

[
ẋ(t)
ẇ(t)

]
=
[
A 0

−C 0

] [
x(t)
w(t)

]
+
[
B

0

]
u(t) +

[
B

0

]
d

y(t) =
[
C 0

] [ẋ(t)
ẇ(t)

] (4.78)

Or, if

xe =
[
ẋ(t)
ẇ(t)

]
, Ae =

[
A 0

−C 0

]
, Be =

[
B

0

]
, Ce =

[
C 0

]
(4.79)

, it becomes ẋe(t) = Aexe(t) + Be(u(t) + d)
y(t) = Cexe(t)

(4.80)

Since the control law at this time is

u(t) =
[
F G

] [x(t)
w(t)

]
, (4.81)

Fe =
[
F G

]
is the state feedback gain for the expanded system (the design method is the

same as for ordinary state feedback control). This is used in the following code, which,
when executed, yields Figure 4.30.

1 # Integral Servo System
2 from control . matlab import ss , acker , lsim
3

4 A = ’0 1; -4 5’
5 B = ’0; 1’
6 C = ’1 0; 0 1’
7 D = ’0; 0’
8 P = ss(A, B, C, D)
9

10 Pole = [-1, -1]
11 F = -acker (P.A, P.B, Pole)
12 Acl = P.A + P.B@F
13 Pfb = ss(Acl , P.B, P.C, P.D) # stabilized with state feedback
14

15 Td = np. arange (0 ,8 ,0.01)
16 Ud = 0.2 * (Td >=0)

72

17 x, t, _ = lsim(Pfb , Ud , Td , [-0.3 , 0.4])
18

19 fig , ax = plt. subplots ()
20 ax.plot(t, x[: ,0] , label =’x_1 ’)
21 ax.plot(t, x[: ,1] , label =’x_2 ’)
22

23 plot_set (ax , ’t’, ’x’, ’best ’)
24

25 #plt. savefig (’ FB_notConvergenceZero ’,dpi =300)
26

27 A2 = ’0 1; -4 5’
28 B2 = ’0; 1’
29 C2 = ’1 0’
30 D2 = ’0’
31 P2 = ss(A2 , B2 , C2 , D2)
32

33 Ae = np. block ([[P2.A, np. zeros ((2 ,1))], [-P2.C, 0]])
34 Be = np. block ([[P2.B], [0]])
35 Ce = np. block ([P2.C ,0])
36

37 Pole2 = [-1, -1, -5]
38 Fe = -acker (Ae , Be , Pole2)
39

40 Acl2 = Ae + Be@Fe
41 Pfb2 = ss(Acl2 , Be , np.eye (3) , np. zeros ((3 ,1)))
42

43 x2 , t2 , _ = lsim(Pfb2 , Ud , Td , [-0.3 , 0.4 , 0])
44

45 fig , ax = plt. subplots ()
46 ax.plot(t2 , x2 [: ,0] , label =’x_1 ’)
47 ax.plot(t2 , x2 [: ,1] , label =’x_2 ’)
48

49 plot_set (ax , ’t’, ’x’, ’best ’)
50

51 #plt. savefig (’ integral_servo_system ’,dpi =300)

Listing 4.14: Integral servo system

Figure 4.30: Integral servo system

This shows that the state converges to 0 for a constant value disturbance. Also, by
constructing an integral servo system, the output y can be made to follow a constant
target value r.

73

C
ha

pt
er 5

SYSTEM DESIGN（OL)

5.1 Control specification for open loop
In chapter 4, we considered transfer function from reference to output

Gyr = P(s)K
1 + P(s)K

(5.1)

in closed loop system. However, this is nonlinear with respect to the controller and the
controlled object, so it is difficult to see at a glance how a change in K(s) or uncertainty
in P(s) changes the characteristics of the closed loop.

Therefore, the controller is designed by cutting the loop and looking at the characteristics
of the open loop

H(s) = P(s)K(s). (5.2)
Since this is linear with respect to the controller and the control target, we can immediately
determine how to change K(s) to satisfy the control specification and how much the uncer-
tainty of P(s) affects it. For example, even if the model P(s) of the control target is not
known, control design is possible if the frequency response of H(s) is known. In addition,
the frequency characteristics (gain and phase) of multiple elements coupled in series can be
obtained by adding up the frequency characteristics of each element, and controller design
is often easier than in closed-loop applications.

Therefore, in this chapter, the design specifications for closed-loop systems described in
Chapter 4 are rewritten for open-loop systems. Unless otherwise stated, H(s) = P(s)K(s)
is stable and there is no zero cancellation of unstable poles between P(s) and K(s).

74

5.1.1 Stability
The stability of the open loop is determined using the Nyquist Stability Discriminant
Method. This is approximately as follows.

Nyquist Stability Discriminant Method

When H(s) = P(s)K(s) is stable, at its frequency response, the open-loop system is
stable if the phase crossing frequency ωpc is greater than the gain crossing frequency
ωgc.

Here, the phase crossing frequency ωpc is the frequency where ∠H(jω) = −180deg = πrad,
and the gain crossing frequency ωgc is the frequency whee |H(jω)| = 1.

For example, let us apply a sin signal u(t) = sin ωpc with frequency ωpc to a stable
system H(s). If the phase is delayed by 180deg, or π rad, the steady-state output of the
system is

y(t) = |H(jωpc)| sin(ωpct − π) = −|H(jωpc)| sin(ωpct). (5.3)
When a new input is added to the system as

u(t) = sin ωpct + |H(jωpc)| sin(ωpct) = (1 + |H(jωpc)|) sin ωpct (5.4)

by negative feedback, the output is

y(t) = −(|H(jωpc)| + |H(jωpc)|2) sin(ωpct). (5.5)

Strictly speaking, the output is negatively feedbacked at each time when a closed loop is
constructed, however, for simplicity, we consider here that the feedback loop is connected
only when a new input is generated using the steady-state output. Then, by repeating this,
the amplitude of the input signal becomes

1 + |H(jωpc)| + |H(jωpc)|2 + · · · (5.6)

If |H(jωpc)| ≥ 1, the input and output signals diverge, and if |H(jωpc)| < 1, then

1 + |H(jωpc)| + |H(jωpc)|2 + · · · = 1
1 − |H(jωpc)|

(5.7)

B and that the input and output converge to some bounded value.
To consider a concrete example, execute the following code to obtain figures 5.1 and 5.2.

1 # Change in amplitude of output with a sine wave input
2 import matplotlib . pyplot as plt
3 import numpy as np
4

5 from control . matlab import tf , lsim , margin
6

7 P = tf ([0 ,1] , [1, 1, 1.5 , 1])
8 P2 = tf ([0 ,1] , [1, 2, 2, 1])
9 _, _, wpc , _ = margin (P) # phase crossover frequency

10 _, _, wpc2 , _ = margin (P2) # phase crossover frequency
11

75

12 t = np. arange (0, 30, 0.1)
13 u = np.sin(wpc*t)
14 y = np. zeros_like (t)
15

16 t2 = np. arange (0, 30, 0.1)
17 u2 = np.sin(wpc*t2)
18 y2 = np. zeros_like (t2)
19

20 fig , ax = plt. subplots (2,2, figsize =(8.0 , 6.0))
21

22 for i in range (2):
23 for j in range (2):
24 u = np.sin(wpc*t) - y # negative feedback
25 y, t, _ = lsim(P, u, t, 0)
26

27 ax[i,j]. plot(t, u, label =’u’)
28 ax[i,j]. plot(t, y, label =’y’)
29 plot_set (ax[i,j], ’t’, ’u, y’, ’lower left ’)
30

31 fig. tight_layout
32

33 #plt. savefig (’ change_in_amp_divergence .png ’, dpi =300)
34

35

36 fig , ax = plt. subplots (2,2, figsize =(8.0 , 6.0))
37

38 for i in range (2):
39 for j in range (2):
40 u2 = np.sin(wpc2*t2) - y2 # negative feedback
41 y2 , t2 , _ = lsim(P2 , u2 , t2 , 0)
42

43 ax[i,j]. plot(t2 , u2 , label =’u’)
44 ax[i,j]. plot(t2 , y2 , label =’y’)
45 plot_set (ax[i,j], ’t’, ’u, y’, ’lower left ’)
46

47 fig. tight_layout
48

49 #plt. savefig (’ change_in_amp_convergence .png ’, dpi =300)

Listing 5.1: Amplitude change of output due to sin wave input

Figure 5.1: Amplitude of output diverges

76

Figure 5.2: Amplitude of output converges

First, Figure 5.1 shows that the phases of the input and output signals are 180 deg out
of phase. In addition, the figure can be viewed as follows: y in the upper left block is used
to generate u in the upper right block, resulting in u = y + sin ωpct, y in the upper right
block is used to generate u in the lower left block, and so on. In this case, the amplitude
of the output signal (orange) is larger than the amplitude of the input signal (blue), and
we can see that the output amplitude diverges. In other words, in such a case, the system
becomes unstable when a closed-loop system is set up.

Therefore, the case where the control target is changed to P2 = tf([0,1], [1, 2,
2, 2, 1] is shown in Figure 5.2. Although the phase is shifted 180deg as before, the
amplitude of the output signal is smaller than the amplitude of the input signal, and the
output amplitude converges to a certain value without diverging as the input is updated.
In such a case, the system is stable.

Now, the closed loop becomes stable when |H(jωpc)| < 1 at a frequency ωpc where the
phase is delayed by 180deg. Also, when the control target is a physical system, in most
cases H(jωpc)| → 0 (ω → ∞), so ωpc > ωgc is stable, which is called Nyquist’s stability
discriminant.

A visual representation of this is called a Nyquist diagram. This is a plot of |H(jω)|
when ω is changed from −∞ to ∞ on the complex number plane. And the gain |H(jωpc)|
when the locus intersects the real axis is less than 1, or in simple terms, if the Nyquist
diagram is to the right of the point (−1, j0), it is stable, otherwise it is unstable. The
Nyquist diagram can be drawn by drawing

H(jω) = α(ω) + jβ(ω) (5.8)

A with ω varying from −∞ to ∞ in Python as follows.

77

1 # Nyquist Diagram
2 from control . matlab import tf , nyquist , logspace
3

4 fig , ax = plt. subplots (1 ,2)
5

6 P = tf ([0 , 1], [1, 1, 1.5 , 1]) # unstable
7 x, y, _ = nyquist (P, logspace (-3, 5, 1000) , plot= False)
8 ax [0]. plot(x, y)
9 ax [0]. plot(x, -y)

10 ax [0]. scatter (-1, 0)
11 plot_set (ax [0] , ’Re ’, ’Im ’)
12

13 P2 = tf ([0 , 1], [1, 2, 2, 1]) # stable
14 x, y, _ = nyquist (P2 , logspace (-3, 5, 1000) , plot= False)
15 ax [1]. plot(x, y)
16 ax [1]. plot(x, -y)
17 ax [1]. scatter (-1, 0)
18 plot_set (ax [1] , ’Re ’, ’Im ’)
19

20 fig. tight_layout ()
21

22 #plt. savefig (’ nyquist .png ’, dpi =300)

Listing 5.2: Nyquist diagram

Figure 5.3: Nyquist diagram

In the left figure 5.3, when ω is changed from 0 to ∞, the closed-loop system is unstable
because the trajectory goes around the left side of the point (−1, j0). On the other hand,
in the figure on the right, the trajectory goes around the right side of the point (−1, j0),
so the closed-loop system is stable.

In addition, when considered in correspondence with the Bode diagram, Figure 5.4 is
shown. Since H = PK, increasing the gain of the controller K increases the gain of H and
the gain diagram moves up in parallel. Then ωgc increases, but the phase does not change.

78

Figure 5.4: Open loop TF

5.1.2 Quick-response
First, let us discuss the phase margin ϕpm, which will appear frequently from this point
onward. This is the degree to which the phase ∠H(jωgc) of the open loop H at the gain
crossing frequency ωgc is lead from -180deg and is expressed as

ϕpm = 180 + ∠H(jωgc), (5.9)

(Figure ??). In other words, it represents how far H(jωgc) is from the point (−1, j0). The
larger the phase margin, the less likely it is to become unstable even if the parameter being
controlled fluctuates.

There is also a gain margin Ggm, which indicates how far H(jωpc) is from the point
(−1, j0) at the phase crossing frequency ωpc. In other words, it means how many times
|H(jωpc)| is equal to 1, and it takes a larger value the further it is from the point (−1, j0)
and the closer it is to the origin. If ρ = 1

|H(jωpc)| , the gain margin is

Ggm = 20 log10 ρ. (5.10)

Figure 5.5: Phase margin ・ Gain margin

79

Now, in Chapter 5, we confirmed that the larger the bandwidth ωbw is, the better the
quick response is in a closed loop. For example, if |Gyr(0)| = 1, the bandwidth of Gyr is the
frequency such that |Gyr(jωbw)| = 1√

2 .
On the other hand, for the open-loop system H(jω), we know |H(jωgc)| = 1, so

|Gyr(jωgc)| = 1
|1 + H(jωgc)|

, (5.11)

and from the picture on the left side of Figure 5.5,

|1 + H(jωgc)| = 2 sin ϕpm

2
, (5.12)

so
|Gyr(jωgc)| = 1

2 sin ϕpm
2

. (5.13)

Therefore, when ϕpm = 90deg, it is

|Gyr(jωgc)| = 1√
2

, (5.14)

and ωgc = ωbw. On the other hand, when ϕpm < 90deg, it is

|Gyr(jωgc)| >
1√
2

, (5.15)

so ωgc < ωbw.
From the above, ϕpm ≤ 90, ωgc ≤ ωbw. Therefore, if the gain crossing frequency ωgc of

the open-loop system H is increased, bandwidth of the closed-loop system ωbw becomes
larger, resulting in a faster response.

5.1.3 Damping
Next, consider the damping property. In a closed-loop system, the smaller the peak gain
Mp of Gyr, the better the damping (Chapter 5). The peak gain of Gyr is

Mp = max
ω

|Gyr(jω)|. (5.16)

From this and equation 5.13,

Mp > |Gyr(jωgc)| = 1
2 sin ϕpm

2
(5.17)

is obtained. From this, if the phase margin ϕpm is small, |Gyr(jωgc)| becomes large, and it
is easy to become oscillatory. In other words, to improve the damping property, the phase
margin ϕpm should be increased.

80

5.1.4 Steady-state properties
Since the transfer function Ger(s) from the reference r to the deviation e is

Ger(s) = 1
1 + H(s)

, (5.18)

the steady-state deviation from the step target value is

e(∞) = 1
1 + H(0)

(5.19)

Therefore, to reduce the steady-state deviation, increase the low-frequency gain

lim
ω→0

|H(jω)| (5.20)

of the open-loop system H, that is, increase the DC gain |H(0)|.
When K includes an integrator, |H(0)| = ∞, and the step target value is followed

without steady-state deviation (type 1 control system). More generally, when the number
of integrators is i, it is called an i-type control system. When the Laplace transform of the
reference is 1

si , the steady-state deviation becomes 0 for an i-type control system.

5.1.5 Summary
Here, we summarize the design specifications for open-loop systems.

Stability : Keep gain crossing frequency ωgc<phase crossing frequency ωpc.

Quick-response : Make the gain cross frequency ωgc as large as possible.

Damping : Make the phase margin ϕpm large.

Steady-state properties : Increase low-frequency gain (set |H(0)| = ∞ for DC gain)

If you want to find gain margin, phase margin, phase crossing frequency, and gain cross-
ing frequency in Python, you can use the margin function and write gm, pm, wpc, wgc
= margin(sys). To obtain the gain and phase for a specific frequency, use the freqresp
function and write mag, phase, w = freqresp(sys, omega). Specific code examples are
shown in the following sections.

5.2 PID control (open-loop characteris-
tics)
As in Chapter 5, the following vertical drive arm model is considered to confirm the open-
loop characteristics of PID control.

81

1 # Params for Vertical Drive Arm
2 from control . matlab import tf
3

4 g = 9.81 # gravitational acceleration
5 l = 0.2 # arm length
6 M = 0.5 # arm mass
7 mu = 1.5e -2 # coefficient of viscous friction
8 J = 1.0e -2 # moment of inertia
9

10 P = tf ([0 ,1] ,[J,mu ,M*g*l])
11

12 ref = 30 # reference angle

Listing 5.3: Vertical drive arm model

5.2.1 P control
When considering the proportional gain of K(s) = kP , the following code confirms what
happens to the characteristics of the open-loop transfer function H(s) = P(s)K(s). This
yields Figure 5.6.

1 # P Control (OL)
2 import matplotlib . pyplot as plt
3 import numpy as np
4 from control . matlab import tf , bode , logspace , mag2db , margin , feedback , step
5

6 kp = (0.5 , 1, 2)
7

8 fig , ax = plt. subplots (2 ,1)
9

10 for i in range (len(kp)):
11 K = tf ([0 , kp[i]], [0 ,1]) # P controller
12 H = P * K # open loop
13

14 mag , phase , w = bode(H, logspace (-1 ,2 ,1000) , plot= False)
15 pltargs = {’label ’:f’k_P ={ kp[i]} ’}
16 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
17 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
18

19 gm , pm , wpc , wgc = margin (H)
20 ax [0]. scatter (wgc , 0)
21 print (’kP=’, kp[i])
22 print (’(GM , PM , wpc , wgc)’)
23 print (margin (H))
24 print (’----------------’)
25

26 bodeplot_set (ax , 3)
27

28 #plt. savefig (’ Pcontrol_ol .png ’, dpi =300)

Listing 5.4: P control (open-loop)

82

Figure 5.6: Bode plot for P control (open-loop)

The circles in Figure 5.6 indicate the gain crossing frequency. From this figure, it can be
seen that the gain crossing frequency increases as the proportional gain kP is increased. On
the other hand, it also shows that the phase margin becomes smaller as the proportional
gain kP is increased. In other words, increasing the proportional gain makes the response
faster, but the response becomes oscillatory. The low-frequency gain also increases along
with the proportional gain kP , but because it is not ∞, the steady-state deviation remains.
This is consistent with the results in Figure 4.7.

5.2.2 PI control
Next, for PI control, we examine the open-loop transfer function characteristics when the
proportional gain kP of K(s) = kP + kI

s is fixed and the integral gain kI is varied. Figures
5.7 and 5.8 are obtained by executing the following code.

1 # PI Control (OL)
2 import matplotlib . pyplot as plt
3 import numpy as np
4 from control . matlab import tf , bode , logspace , mag2db , margin , feedback , step
5

6 kp = 2
7 ki = (0, 5, 10)
8

9 fig , ax = plt. subplots (2 ,1)
10

11 for i in range (len(ki)):
12 K = tf ([kp , ki[i]], [1 ,0]) # PI controller
13 H = P * K # open loop
14

15 mag , phase , w = bode(H, logspace (-1 ,2 ,1000) , plot= False)
16 pltargs = {’label ’:f’k_I ={ ki[i]} ’}
17 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
18 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
19

20 gm , pm , wpc , wgc = margin (H)

83

21 ax [0]. scatter (wgc , 0)
22 print (’kP=’, kp , ’, kI=’, ki[i])
23 print (’(GM , PM , wpc , wgc)’)
24 print (margin (H))
25 print (’----------------’)
26

27 bodeplot_set (ax , 3)
28

29 #plt. savefig (’ PIcontrol_ol .png ’, dpi =300)
30

31 fig , ax = plt. subplots ()
32

33 for i in range (len(ki)):
34 K = tf ([kp , ki[i]], [1 ,0])
35 Gyr = feedback (P*K, 1) # closed loop
36 y, t = step(Gyr , np. arange (0, 2, 0.01)) # step responce
37

38 pltargs = {’label ’:f’k_I ={ ki[i]} ’}
39 ax.plot(t, y*ref , ** pltargs)
40

41 ax. axhline (ref , color =’k’, linewidth =1)
42 plot_set (ax , ’t’, ’y’, ’best ’)
43

44 #plt. savefig (’ StepResponse_PI .png ’, dpi =300)

Listing 5.5: PI control (open-loop)

Figure 5.7: Bode plot for PI control (open-loop)

84

Figure 5.8: Step response of closed-loop system with PI control

First, from Figure 5.7, it can be seen that the low-frequency gain increases as the integral
gain kI is increased. Also, since the DC gain is ∞, the steady-state deviation from the step
target value is 0.

On the other hand, as the integral gain kI is increased, the phase margin becomes
smaller, eventually falling below 0 deg and ωpc > ωgc is no longer valid. This means that
the closed-loop system becomes unstable. In other words, increasing the integral gain kI

can reduce the steady-state deviation, but the response becomes oscillatory and unstable.
This is illustrated in Fig. 5.8. The step response of the closed-loop system Gyr(s) becomes
unstable as the integral gain kI increases.

5.2.3 PID control
Finally, consider the PID control K(s) = kP + kI

s + kDs with D control added, and also
examine the open-loop characteristics when the differential gain kD is varied with the
proportional gain kP and integral gain kI fixed. Execute the following code to obtain
Figures 5.9 and 5.10.

1 # PID Control (OL)
2 import matplotlib . pyplot as plt
3 import numpy as np
4 from control . matlab import tf , bode , logspace , mag2db , margin , feedback , step
5

6 kp = 2
7 ki = 5
8 kd = (0, 0.1 , 0.2)
9

10 fig , ax = plt. subplots (2 ,1)
11

12 for i in range (len(kd)):
13 K = tf ([kd[i], kp , ki], [1 ,0]) # PID controller
14 H = P * K # open loop
15

16 mag , phase , w = bode(H, logspace (-1 ,2 ,1000) , plot= False)

85

17 pltargs = {’label ’:f’k_D ={ kd[i]} ’}
18 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
19 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
20

21 gm , pm , wpc , wgc = margin (H)
22 ax [0]. scatter (wgc , 0)
23 print (’kP=’, kp , ’, kI=’, ki , ’, kD=’, kd[i])
24 print (’(GM , PM , wpc , wgc)’)
25 print (margin (H))
26 print (’----------------’)
27

28 bodeplot_set (ax , 3)
29

30 #plt. savefig (’ PIDcontrol_ol .png ’, dpi =300)
31

32 fig , ax = plt. subplots ()
33

34 for i in range (len(kd)):
35 K = tf ([kd[i], kp , ki], [1 ,0])
36 Gyr = feedback (P*K, 1) # closed loop
37 y, t = step(Gyr , np. arange (0, 2, 0.01)) # step responce
38

39 pltargs = {’label ’:f’k_D ={ kd[i]} ’}
40 ax.plot(t, y*ref , ** pltargs)
41

42 ax. axhline (ref , color =’k’, linewidth =1)
43 plot_set (ax , ’t’, ’y’, ’best ’)
44

45 #plt. savefig (’ StepResponse_PID .png ’, dpi =300)

Listing 5.6: PID control (open-loop)

Figure 5.9: Bode plot for PID control (open-loop)

86

Figure 5.10: Step response of closed-loop system with PID control

First, from Figure 5.9, we can see that increasing the differential gain kD increases the
phase margin and prevents instability. In addition, the addition of differential gain kD does
not change the low-frequency gain. This indicates that the addition of D control reduces
oscillation, but does not improve the steady-state characteristics. This can also be seen
from the step response of the closed-loop system (Figure 5.10).

5.2.4 Summary
To summarize the above, the performance of the two controllers

• P control：kP = 1, kI = 0, kD = 0

• PID control：kP = 2, kI = 5, kD = 0.1

are compared using the following code to obtain Figures 5.11, 5.12 and 5.13.
1 # Comparison
2 kp = (1, 2)
3 ki = (0, 5)
4 kd = (0, 0.1)
5 Label = (’Before ’,’After ’)
6

7 fig , ax = plt. subplots (2, 1)
8

9 for i in range (2):
10 K = tf ([kd[i], kp[i], ki[i]], [1 ,0])
11 H = P * K
12

13 mag , phase , w = bode(H, logspace (-1 ,2 ,1000) , plot= False)
14 pltargs = {’label ’: Label [i]}
15 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
16 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
17

18 gm , pm , wpc , wgc = margin (H)
19 ax [0]. scatter (wgc , 0)
20

21 bodeplot_set (ax , 3)

87

22

23 #plt. savefig (’ Comparison_OL .png ’, dpi =300)
24

25 fig , ax = plt. subplots (2, 1)
26

27 for i in range (2):
28 K = tf ([kd[i], kp[i], ki[i]], [1 ,0])
29 Gyr = feedback (P*K, 1)
30

31 mag , phase , w = bode(Gyr , logspace (-1 ,2 ,1000) , plot= False)
32 pltargs = {’label ’: Label [i]}
33 ax [0]. semilogx (w, mag2db (mag), ** pltargs)
34 ax [1]. semilogx (w, np. rad2deg (phase), ** pltargs)
35

36 bodeplot_set (ax , 3)
37

38 #plt. savefig (’ Comparison_CL .png ’, dpi =300)
39

40 fig , ax = plt. subplots ()
41

42 for i in range (2):
43 K = tf ([kd[i], kp[i], ki[i]], [1 ,0])
44 Gyr = feedback (P*K, 1)
45 y, t = step(Gyr , np. arange (0, 2, 0.01)) # step responce
46

47 pltargs = {’label ’:f’k_D ={ kd[i]} ’}
48 ax.plot(t, y*ref , ** pltargs)
49

50 ax. axhline (ref , color =’k’, linewidth =1)
51 plot_set (ax , ’t’, ’y’, ’best ’)
52

53 #plt. savefig (’ Comparison_StepResponse .png ’, dpi =300)

Listing 5.7: Comparison

Figure 5.11: Comparison of Bode diagram of P control and PID control (open loop)

88

Figure 5.12: Comparison of Bode diagram of P control and PID control (closed loop)

Figure 5.13: Comparison of step responses of P-control and PID-control (closed-loop)

First, from Fig. 5.11, it can be seen that by using PID control, the open-loop system can
be tuned to meet the design specifications (stability: maintain ωgc < ωpc, quick response:
make ωgc as large as possible, and damping property: (increase the phase margin ϕpm,
steady-state characteristics: increase the low-frequency gain).

Figure 5.12 also shows that the closed-loop system is designed to meet the design speci-
fications (fast response: make the bandwidth ωbw sufficiently large, attenuation: make the
peak gain Mp small, and steady-state characteristics: make the DC gain 0 dB).

Furthermore, Fig. 5.13 shows the step response of the closed-loop system, which indi-
cates that the system is able to follow the target value quickly while suppressing vibration
by tuning with PID control.

89

5.3 Phase lead and lag compensation
In the PID control we have seen so far, the proportional, integral, and derivative elements
were connected in parallel. Now consider gain compensation, phase lag compensation, and
phase lead compensation connected in series as shown in Figure 5.14. In general, the series
connection is easier to design prospectively because the gain and phase diagrams of the
system are expressed by adding up those of each element.

Figure 5.14: Series compensation

5.3.1 Phase lag compensation
The phase delay compensation is represented as

K1(s) = α
T1s + 1

αT1s + 1
(α > 1) (5.21)

For example, a Bode plot with α = 10, T1 = 0.1 using the following code is shown in Fig.
5.15.

1 # Phase -Lag Compensation
2 import matplotlib . pyplot as plt
3 import numpy as np
4 from control . matlab import tf , bode , logspace , mag2db , margin , feedback , step
5

6 alpha = 10
7 T1 = 0.1
8 K1 = tf ([alpha *T1 , alpha], [alpha *T1 , 1])
9 mag , phase , w = bode(K1 , logspace (-2 ,3) , plot= False)

10

11 fig , ax = plt. subplots (2, 1)
12 ax [0]. semilogx (w, mag2db (mag))
13 ax [1]. semilogx (w, np. rad2deg (phase))
14 bodeplot_set (ax)
15

16 #plt. savefig (’phase - lag_compensation .png ’, dpi =300)

Listing 5.8: Phase lag compensation

90

Figure 5.15: Phase lag compensation

Thus, it can be seen that increasing the low-frequency gain (by 20 log10 α) can improve
the steady-state characteristics. However, in this case, the phase is delayed in the band of

1
αT1

∼ 1
T1

. Also, the phase will be delayed by a maximum of ϕm at ωm. However,

ωm = 1
T1

√
α

, ϕm = sin−1 1 − α

1 + α
. (5.22)

In addition, if α → ∞ is used in the phase lag compensation formula 5.21, the performance
is approximated as K1(s) = 1 + 1

T1s , which is close to PI control.
The design procedure using this phase lag compensation is as follows.

1. Determine α to meet the specification for steady-state deviation, taking into account
that the low-frequency gain will increase by 20 log10 α [dB].

2. Choose T1 so that ω = 1
T1

is less than one-tenth of the design value of the gain crossing
frequency so that the phase lag does not degrade stability.

5.3.2 Phase lead compensation
The phase lead compensation is represented as

K2(s) = T2s + 1
βT2s + 1

(β < 1). (5.23)

For example, a Bode diagram with β = 0.1, T2 = 1 using the following code is shown in
Fig. 5.16.

1 # Phase -Lead Compensation
2 import matplotlib . pyplot as plt
3 import numpy as np
4 from control . matlab import tf , bode , logspace , mag2db , margin , feedback , step
5

6 beta = 0.1

91

7 T2 = 1
8 K2 = tf ([T2 , 1], [beta*T2 , 1])
9 mag , phase , w = bode(K2 , logspace (-2 ,3) , plot=False , wrap_Phase =True)

10

11 fig , ax = plt. subplots (2, 1)
12 ax [0]. semilogx (w, mag2db (mag))
13 ax [1]. semilogx (w, np. rad2deg (phase))
14 bodeplot_set (ax)
15

16 #plt. savefig (’phase - lead_compensation .png ’, dpi =300)

Listing 5.9: Phase lead compensation

Figure 5.16: Phase lead compensation

This phase lead increases the phase margin and improves attenuation. In addition, it
can be seen that the high-frequency gain is increased, which improves the quick response.
Note that the phase advances by a maximum of ϕm at ωm. However, it is

ωm = 1
T2

√
β

, ϕm = sin−1 1 − β

1 + β
. (5.24)

If β → ∞ is used in the phase lead compensation formula 5.23, the performance is approx-
imated as K2(s) = 1 + T2s, which is close to PD control.

The design procedure using this phase lead compensation is as follows:

1. Evaluate the phase margin ϕ̃pm of the open-loop system before combining K2 and
ϕ̄ = ϕpm − ϕ̃pm for the target ϕpm is calculated. Then, determine β so that ϕm = ϕ̄.

2. Determine T2 so that the frequency you want to set as the final gain crossing frequency
is ωm.

92

5.3.3 Control system design for vertical drive
arm
As an example, let us design a controller K(s) = kK1(s)K1(s) consisting of gain compen-
sation, phase lag compensation, and phase lead compensation for a vertical drive arm. As
design specifications, the gain crossing frequency is set to 40 rad/s and the phase margin
to 60 dB, aiming to keep the steady-state deviation as small as possible.

Figure 5.17: Bode plot for vertical drive arm

First, the Bode plot of the plant is drawn as shown in Fig. 5.17. Since the DC gain
is 0 dB, a steady-state deviation remains even if the feedback control system is built as it
is. Therefore, to reduce the steady-state deviation, the low-frequency gain is increased by
phase lag compensation.

Here, α = 20 is used, and the frequency at which the gain is increased should be such
that the value of 1

T1
is about one-tenth of the final gain crossing frequency. In the current

case, T1 = 0.25, since 40 rad/s is the design value. Therefore, the value is

K1(s) = 5s + 20
5s + 1

(5.25)

Here, if the code below is executed, the Bode plot of the open-loop system H1(s) =
P(s)K1(s) will be as shown in Fig. 5.18.

1 # Phase -Lag Compensation for Vertical Drive Arm
2

3 from control . matlab import tf , bode , logspace , mag2db , margin , freqresp
4

5 alpha = 20
6 T1 = 0.25
7 K1 = tf ([alpha *T1 , alpha], [alpha *T1 , 1])
8 print (’K1=’, K1)

93

9

10 H1 = P * K1
11 mag , phase , w = bode(H1 , logspace (-1 ,2 ,1000) , plot= False)
12

13 fig , ax = plt. subplots (2, 1)
14 ax [0]. semilogx (w, mag2db (mag))
15 ax [1]. semilogx (w, np. rad2deg (phase))
16 ax [1]. set_ylim (-200 , 2)
17 bodeplot_set (ax)
18

19 #plt. savefig (’phase - lag_compensation_VDA .png ’, dpi =300)
20

21 [mag], [phase], _ = freqresp (H1 , [40])
22 phaseH1at40 = np. rad2deg (phase)
23 print (’----------------------’)
24 print (’phase at 40 rad/s =’, phaseH1at40 -360)

Listing 5.10: Phase lag compensation (vertical drive arm)

Figure 5.18: Phase lag compensation (vertical drive arm)

From this, it can be seen that the low-frequency gain is increasing.
If the phase margin is left as it is, the phase margin will fall below 60 deg (the phase

margin at 40 rad/s is about -3 deg), so it is necessary to advance the phase by about 63
deg. Therefore, ϕm = 63deg and β is calculated as in

β = 1 − sin ϕm

1 + sin ϕm
. (5.26)

Also, let T2 be
T2 = 1

ωm

√
β

. (5.27)

From this, the phase lead compensation is

K2(s) = 0.1047s + 1
0.005971s + 1

. (5.28)

At this point, executing the code below, the Bode plot of the open-loop system H2(s) =
P(s)K1(s)K2(s) will be as shown in Fig. 5.19.

94

1 # Phase -Lead Compensation for Vertical Drive Arm
2

3 from control . matlab import tf , bode , logspace , mag2db , margin , freqresp
4

5 phim = (60 - (180 + phaseH1at40)) * np.pi / 180
6 beta = (1 - np.sin(phim)) / (1 + np.sin(phim))
7

8 T2 = 1/40/ np.sqrt(beta)
9 K2 = tf ([T2 , 1], [beta*T2 , 1])

10 print (’K2=’, K2)
11

12 fig , ax = plt. subplots (2, 1)
13 H2 = P * K1 * K2
14 mag , phase , w = bode(H2 , logspace (-1 ,2 ,1000) , plot= False)
15 ax [0]. semilogx (w, mag2db (mag))
16 ax [1]. semilogx (w, np. rad2deg (phase))
17 ax [1]. set_ylim (-200 , 2)
18 bodeplot_set (ax)
19

20 #plt. savefig (’phase - lead_compensation_VDA .png ’, dpi =300)
21

22 [mag], [phase], _ = freqresp (H2 , [40])
23 magH2at40 = mag
24 phaseH2at40 = np. rad2deg (phase)
25 print (’----------------------’)
26 print (’gain at 40 rad/s =’, mag2db (magH2at40))
27 print (’phase at 40 rad/s =’, phaseH2at40)

Listing 5.11: Phase lead compensation (vertical drive arm)

Figure 5.19: Phase lead compensation (vertical drive arm)

From this, the phase is advanced around 40 rad/s to -120deg.
Finally, the gain at 40 rad/s is set to 0 dB by gain compensation; since the gain at 40

rad/s is about -11.06 dB, it is moved up by this amount. Therefore, as shown in the code
below, k =1/magH2at40 is used as gain compensation to obtain Fig. 5.20.

1 # Gain Compensation for Vertical Drive Arm
2

3 k = 1 / magH2at40
4 print (’k=’, k)

95

5

6 H = P * k * K1 * K2
7

8 fig , ax = plt. subplots (2 ,1)
9 mag , phase , w = bode(P, logspace (-1 ,2 ,1000) , plot= False) # before

10 ax [0]. semilogx (w, mag2db (mag), label =’P’)
11 ax [1]. semilogx (w, np. rad2deg (phase), label =’P’)
12 gm , pm , wpc , wgc = margin (P)
13 ax [0]. scatter (wgc , 0)
14

15 mag , phase , w = bode(H, logspace (-1 ,2 ,1000) , plot= False) # after
16 ax [0]. semilogx (w, mag2db (mag), label =’H’)
17 ax [1]. semilogx (w, np. rad2deg (phase), label =’H’)
18 gm , pm , wpc , wgc = margin (H)
19 ax [0]. scatter (wgc , 0)
20

21 bodeplot_set (ax , 3)
22

23 print (’----------------------’)
24 print (’(GM , PM , wpc , wgc)’)
25 print (margin (H))
26

27 #plt. savefig (’ HandP_VDA .png ’)

Listing 5.12: Gain compensation (vertical drive arm)

Figure 5.20: Gain compensation (vertical drive arm)

This shows that the control design meets the specifications. Therefore, finally, we also
check the characteristics of the closed-loop system. The transfer function from the target
value r to the output y is

Gyr = H
1 + H

, (5.29)

and executing the following code yields the step response shown in Fig. 5.21.
1 # Gain Compensation for Vertical Drive Arm (Step Responce)
2

3 from control . matlab import feedback , step
4

5 fig , ax = plt. subplots ()
6

96

7 Gyr_P = feedback (P, 1)
8 y, t = step(Gyr_P , np. arange (0 ,2 ,0.01))
9 ax.plot(t, y*ref , label =’before ’)

10

11 Gyr_H = feedback (H, 1)
12 y, t = step(Gyr_H , np. arange (0 ,2 ,0.01))
13 ax.plot(t, y*ref , label =’after ’)
14

15 ax. axhline (ref , color =’k’, linewidth =1)
16 plot_set (ax , ’t’, ’y’, ’best ’)
17

18 #plt. savefig (’ step_VDA .png ’)

Listing 5.13: Step response (vertical drive arm)

Figure 5.21: Gain compensation (step response for vertical drive arm)

This shows that the oscillations and steady-state deviations are reduced, as they quickly
reach near the target value. In addition, the following code will produce a Bode diagram
as shown in Fig. 5.22

1 # Closed -Loop for VDA
2

3 fig , ax = plt. subplots (2, 1)
4

5 mag , phase , w = bode(Gyr_P , logspace (-1 ,2 ,1000) , plot= False)
6 ax [0]. semilogx (w, mag2db (mag), label =’before ’)
7 ax [1]. semilogx (w, np. rad2deg (phase), label =’before ’)
8

9 mag , phase , w = bode(Gyr_H , logspace (-1 ,2 ,1000) , plot= False)
10 ax [0]. semilogx (w, mag2db (mag), label =’before ’)
11 ax [1]. semilogx (w, np. rad2deg (phase), label =’after ’)
12

13 bodeplot_set (ax , 3)
14 #plt. savefig (’ CL_VDA .png ’)

Listing 5.14: Boded plot (vertical drive arm)

97

Figure 5.22: Gain compensation (Bode plot for vertical drive arm)

The DC gain was less than 0 dB and the peak gain was small before the design, but the
phase lag/lead compensation increased the DC gain to around 0 dB, suppressed the peak
gain, and increased the bandwidth.

98

C
ha

pt
er 6

ADVANCED CONTROL

For example, when a user wants to build a state feedback control system, sometimes it may
be difficult to determine the state by sensors for a variety of reasons, such as physical con-
straints that prevent the placement of sensors in the mechanism. In other cases, parameters
in the model may be uncertain, and in reality, not everything will work. As an example
of how to deal with these problems, this chapter describes the basics of observers, robust
control, and model predictive control. Finally, we discuss discretization for implementing
the designed controller in a digital device.

6.1 Observer
In the design of control systems using transfer function models, such as PID control and
phase lead/lag compensation described in the previous chapters, the ”output” of the control
target is fed back. On the other hand, state feedback control using a state-space model
feeds back the ”state” of the control target.

However, there are cases where a sensor cannot be placed in the first place due to
mechanical problems with the control target, or where not all states can be acquired even
if a sensor is used. In such cases, state feedback cannot be provided, and the user is left
with the choice of giving up. In such cases, we can estimate the internal state x from the
known input u and output y using an observer like the one shown in Figure 6.1.

99

Figure 6.1: Observer

6.1.1 Full-order state observer
There are various types of observers, but the full-order state observer represented by

˙̂x(t) = Ax̂(t) + Bu(t) − L(y(t) − Cx̂(t)) (6.1)

is often used. where x̂ is the estimated value, the first and second terms on the right side
are the model of the control target, and the third term is the feedback of the difference
between the actually observed output y of the control target and the estimated output Cx̂

by the observer. Note that L is the design parameter, which is called the observer gain.
Now, substituting y = Cx into equation 6.1 and rearranging, we obtain

˙̂x(t) = (A + LC)x̂(t) + Bu(t) − LCx(t). (6.2)

Let e = x(t) − x̂(t) be the estimation error, since

ė(t) = (A + LC)e(t), (6.3)

so if A + LC is stable, then e(t) → 0 (t → ∞), i.e., x̂(t) → x(t) (t → ∞), and the
estimated value x̂ follows the state x to be controlled.

Basically, the design of the observer gain L uses pole placement, similar to the design
of the state feedback gain F described in Chapter 4. If the system is observable, the poles
can be placed at arbitrary locations, so L is determined so that the eigenvalues of A+LC

are at the specified poles.
In the following, the plant is as follow list.

100

1 # Plant
2 from control . matlab import ss , acker , lsim
3

4 A = ’0 1; -4 -5’
5 B = ’0; 1’
6 C = ’1 0’
7 D = ’0’
8

9 P = ss(A, B, C, D)

Listing 6.1: Plant for chap7

Observer gains are designed with −10 ± 5j as the observer pole, utilizing the dual rela-
tionship between controllability and observability. To put it simply, it is equivalent to say
that (C, A) is observable and (A⊤, C⊤) is controllable. Based on this, we can consider
(A + LC)⊤ = A⊤ + C⊤L⊤ and calculate L⊤ from A⊤とC⊤.

If the observer is implemented in the form

˙̂x(t) = (A + LC)x̂(t) +
[
B −L

] [u(t)
y(t)

]
(6.4)

state estimation can be simulated with the following code, yielding Figure 6.2.
1 # State Estimation with Observer
2 import matplotlib . pyplot as plt
3 import numpy as np
4

5 observer_poles = [-10+5j, -10-5j]
6

7 L = -acker (P.A.T, P.C.T, observer_poles).T # observer gain
8

9 fig , ax = plt. subplots (1,2, figsize =(12 ,4))
10

11 ## true behavior
12 G = ss(P.A, P.B, np.eye (2) , [[0] ,[0]])
13 Td = np. arange (0, 3, 0.01)
14

15 u = np. zeros_like (Td) # input
16 X0 = [-1, 0.5] # initial state
17 x, t, _ = lsim(G, u, Td , X0)
18 ax [0]. plot(t, x[:, 0], label =’${x}_1$ ’)
19 ax [1]. plot(t, x[:, 1], label =’${x}_2$ ’)
20

21 y = x[:, 0] # output
22

23

24 ## observer
25 Obs = ss(P.A+L@P.C, np.c_[P.B, -L], np.eye (2) , [[0 ,0] ,[0 ,0]])
26 xhat , t, _ = lsim(Obs , np.c_[u, y], Td , [0, 0])
27 ax [0]. plot(t, xhat [:, 0], label =’\hat{x}_1 ’)
28 ax [1]. plot(t, xhat [:, 1], label =’\hat{x}_2 ’)
29

30 for i in [0, 1]:
31 plot_set (ax[i], ’t’, ’’, ’best ’)
32 ax[i]. set_xlim ([0 , 3])
33

34 ax [0]. set_ylabel (’x_1 , \hat{x}_1 ’)
35 ax [1]. set_ylabel (’x_2 , \hat{x}_2 ’)
36

37 #plt. savefig (’ StateEstimation_with_Observer .png ’, dpi =300)

Listing 6.2: State estimation with observer

101

Figure 6.2: State estimation with observer

From Figure 6.2, we can see that x̂ follows x as time passes. This indicates that the
observer can estimate the state.

In addition, based on the principle of separation, the observer and state feedback can be
designed independently. Therefore, as shown in Fig. 6.3, the state feedback u(t) = F x̂(t)
can be applied using x̂(t) estimated by the observer.

Figure 6.3: Block diagram of output feedback control

The controller is then

K =
 ˙̂x(t) = (A + BF + LC)x̂(t) − Ly(t)

u(t) = F x̂
(6.5)

and the control input u(t) can be calculated from the output y(t) to be controlled. Also,

102

Laplace transforming it yields

K(s) = −F (sI − (A + BF + LC))−1L. (6.6)

Furthermore, executing the code below for this output feedback control yields Figure 6.4.

1 # Output Feedback Control
2 from control . matlab import tf , feedback , initial
3

4 ## design of state feedback gain
5 regulator_poles = [-5+2j, -5-2j]
6 F = -acker (P.A, P.B, regulator_poles)
7

8 ## design of observer gain
9 observer_poles = [-10+5j, -10-5j]

10 L = -acker (P.A.T, P.C.T, observer_poles).T
11

12 ## output feedback (observer + state feedback)
13 K = ss(P.A+P.B@F+L@P.C, -L, F, 0)
14 print (’K:\n’, K)
15 print (’------------’)
16 print (’K(s)=’, tf(K))
17

18 Gfb = feedback (P, K, sign =1)
19

20 fig , ax = plt. subplots ()
21 Td = np. arange (0, 3, 0.01)
22

23 y, t = initial (P, Td , [-1, 0.5]) # without output feedback
24 ax.plot(t, y, label =’w/o output feedback ’)
25

26 y, t = initial (Gfb , Td , [-1, 0.5 , 0, 0]) # with output feedback
27 ax.plot(t, y, label =’with output feedback ’)
28

29 plot_set (ax , ’t’, ’y’, ’best ’)
30

31 #plt. savefig (’ OutputFeedbackController .png ’, dpi =300)

Listing 6.3: Output feedback control

Figure 6.4: Output feedback control

103

From this, it can be seen that the response is improved by using both observer and state
feedback.

6.1.2 Disturbance observer
If a constant-valued disturbance is added to the output y, the correct state cannot be
estimated by the observer, as shown in Figure 6.5.

Figure 6.5: State estimation in the presence of disturbances

Therefore, we use a disturbance observer that estimates not only the state but also the
disturbance. For example, if a disturbance d is added to the output y, thenẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + d(t)
(6.7)

Since ḋ(t) = 0 in the case of a constant-valued disturbance, the state is expanded to

[
ẋ(t)
ḋ(t)

]
=
[
A 0
0 0

] [
x(t)
d(t)

]
+
[
B

0

]
u(t)

y(t) =
[
C 1

] [x(t)
d(t)

] (6.8)

Here, constructing the observer as

xe =
[
x(t)
d(t)

]
, Ae =

[
A 0
0 0

]
, Be =

[
B

0

]
, Ce =

[
C 1

]
(6.9)

yields
˙̂xe = Aex̂e(t) + Beu(t) + Le(y(t) − Cex̂e(t)) (6.10)

(the design of the observer gain Le is the same as in the normal case). Executing the code
below for this, we obtain Figure 6.6 (Figure 6.5 is also obtained).

104

1 # Disturbance Observer
2

3 ## without DOB
4 fig , ax = plt. subplots (1, 2, figsize =(12 ,4))
5

6 Td = np. arange (0, 3, 0.01)
7 X0 = [-1, 0.5]
8 d = 0.5*(Td >=1.5) # step disturbance
9

10 x, t = initial (G, Td , X0)
11 ax [0]. plot(t, x[:, 0], label =’${x}_1$ ’)
12 ax [1]. plot(t, x[:, 1], label =’${x}_2$ ’)
13

14 u = np. zeros_like (Td) # input
15 y = x[:, 0]+d # output
16 xhat , t, _ = lsim(Obs , np.c_[u,y], Td , [0, 0])
17 ax [0]. plot(t, xhat [:, 0], label =’\hat{x}_1 ’)
18 ax [1]. plot(t, xhat [:, 1], label =’\hat{x}_2 ’)
19

20 for i in [0, 1]:
21 plot_set (ax[i], ’t’, ’’, ’best ’)
22 ax[i]. set_xlim ([0 , 3])
23

24 ax [0]. set_ylabel (’x_1 , \hat{x}_1 ’)
25 ax [1]. set_ylabel (’x_2 , \hat{x}_2 ’)
26

27 #plt. savefig (’ withoutDOB .png ’, dpi =300)
28

29

30 ## with DOB
31 fig , ax = plt. subplots (1, 2, figsize =(12 ,4))
32

33 Dobserver_poles = [-10+5j, -10-5j, -3]
34

35 Abar = np. block ([[P.A, np. zeros ([2 ,1])], [np. zeros ((1 ,3))]])
36 Bbar = np. block ([[P.B], [0]])
37 Cbar = np. block ([P.C, 1])
38

39 Lbar = -acker (Abar.T, Cbar.T, Dobserver_poles).T
40

41 Aob = Abar + Lbar@Cbar
42 Bob = np. block ([Bbar , -Lbar])
43

44 DObs = ss(Aob , Bob , np.eye (3) , np. zeros ([3 ,2]))
45

46 x, t = initial (G, Td , X0)
47 ax [0]. plot(t, x[:, 0], label =’${x}_1$ ’)
48 ax [1]. plot(t, x[:, 1], label =’${x}_2$ ’)
49

50 xhat , t, _ = lsim(DObs , np.c_[u,y], Td , [0, 0, 0])
51 ax [0]. plot(t, xhat [:, 0], label =’\hat{x}_1 ’)
52 ax [1]. plot(t, xhat [:, 1], label =’\hat{x}_2 ’)
53

54 for i in [0, 1]:
55 plot_set (ax[i], ’t’, ’’, ’best ’)
56 ax[i]. set_xlim ([0 , 3])
57

58 ax [0]. set_ylabel (’x_1 , \hat{x}_1 ’)
59 ax [1]. set_ylabel (’x_2 , \hat{x}_2 ’)
60

61 #plt. savefig (’ withDOB .png ’, dpi =300)

Listing 6.4: Disturbance observer

105

Figure 6.6: Disturbance observer

6.1.3 Stationary Kalman filter
Since the observer estimates the internal state from the output of the plant, it may not be
able to estimate correctly if the output is ridden with noise. In such a case, assume that
the noise is white and design an observer gain L that minimizes the mean square value of
the estimation error.

Here, we consider ẋ(t) = Ax(t) + Bu(t) + v(t)
y(t) = Cx(t) + w(t)

(6.11)

as the plant. However, v is the system noise and w is the observed noise (both are white
noise). Also, their mean and variance areE[v(t)] = 0, E[v(t)v(τ)⊤] = Qδ(t − τ)

E[w(t)] = 0, E[w(t)w(τ)⊤]= Rδ(t − τ)
(6.12)

and v and w are independent of each other.
The following results are known, and the observer designed in this way is called a sta-

tionary Kalman filter.

106

Stationary Kalman filter

For Q > 0, R > 0, the observer (stationary Kalman filter) that minimizes the mean
square value

J = E[(x(t) − x̂(t))⊤(x(t) − x̂(t))] (6.13)
of the estimation error is

˙̂x(t) = Ax̂(t) + Bu(t) − Lopt(y(t) − Cx̂(t)) (6.14)

and the value of Lopt is
Lopt = −PC⊤R−1 (6.15)

However, P = P⊤ is the only positive definite symmetric solution that satisfies the
Riccati equation

AP + PA⊤ + Q − PC⊤R−1CP = 0. (6.16)

The stationary Kalman filter is designed in Python as L, P, E = lqe(A, Bv, C, QN,
RN), etc. Here, the argument A, Bv, C is the system ẋ = Ax + Buv + Bv, y = Cv + w
matrices A, Bv and C, where QN and RN are the covariance of the noise. The return values
L, P, E are the observer gains, the solution of the Riccati equation, and the closed-loop
poles (= eigenvalues of A − LC), respectively.

In the following, we design a stationary Kalman filter for
[
ẋ(t)
ḋ(t)

]
=
[

0 1
−4 −5

]
x(t) +

[
0
1

]
(u(t) + v(t))

y(t) =
[
1 0

]
x(t) + w(t)

(6.17)

If we run the code below with the covariance of the system noise and the observed noise
both set to 1, we obtain Figure 6.7.

1 # Stationary Kalman Filter
2 from control . matlab import ss , lqe , lsim
3

4 QN , RN = 1, 1 # covariance
5 L, _, _ = lqe(P.A, P.B, P.C, QN , RN)
6 L = -L
7 KObs = ss(P.A+L@P.C, np. block ([P.B, -L]) , np.eye (2) , np. zeros ([2 ,2]))
8

9 Td = np. arange (0, 6, 0.01)
10 u = 0.5 * np.sin (6* Td) + 0.5 * np.cos (8* Td)
11 w = np. random . normal (loc =0, scale =np.sqrt(QN), size=len(Td)) # system noise
12 v = np. random . normal (loc =0, scale =np.sqrt(RN), size=len(Td)) # measurement noise
13

14 X0 = [-0.3 , 0.2]
15 sys = ss(P.A, P.B, np.eye (2) , np. zeros ([2 ,1]))
16 _, t, xorg = lsim(sys , u, Td , X0) # state without noise
17 _, t, x = lsim(sys , u+w, Td , X0) # state with noise
18 y = x[:, 0]+ v # output with measurement noise
19

20 fig , ax = plt. subplots (2, 2, figsize =(12 ,5))
21 ax [0 ,1]. plot(t, y, label =’y ’)
22 ax [1 ,0]. plot(t, xorg [: ,0] , label =’x_1 ’)
23 ax [1 ,1]. plot(t, xorg [: ,1] , label =’x_2 ’)
24 ax [0 ,0]. plot(t, u+w, label =’$u+w$ ’)

107

25

26 xhat , t, _ = lsim(KObs , np.c_[u, y], Td , [0, 0]) # state estimation with Kalman filter
27 ax [1 ,0]. plot(t, xhat [: ,0] , label =’\hat{x}_1 ’)
28 ax [1 ,1]. plot(t, xhat [: ,1] , label =’\hat{x}_2 ’)
29 ax [0 ,0]. plot(t, u, label =’u ’)
30

31 for i in [0 ,1]:
32 for j in [0 ,1]:
33 plot_set (ax[i,j], ’t ’, ’’, ’best ’)
34 ax[i,j]. set_xlim ([0 ,6])
35

36 ax [0 ,1]. set_ylabel (’y ’)
37 ax [0 ,0]. set_ylabel (’u ’)
38 ax [1 ,0]. set_ylabel (’x_1 ’)
39 ax [1 ,1]. set_ylabel (’x_2 ’)
40

41 #plt. savefig (’ StationaryKalmanFilter .png ’, dpi =300)

Listing 6.5: Stationary Kalman filter

Figure 6.7: Stationary Kalman filter

The upper part of Figure 6.7 shows the control input and output with noise input to the
Kalman filter, and the lower part shows the state estimated from them. This figure shows
that the state can be estimated by using the Kalman filter even in the presence of noise.

6.2 Robust control
6.2.1 About robust Control

Up to this point, a control system has been constructed using a mathematical model,
but this mathematical model is not a perfect representation of the real control target,
i.e., the model includes uncertainties (such as errors in the model parameters, effects of
disturbances, or nonlinearity that is not taken into account). Therefore, it is important

108

to design the control considering the model uncertainty. In this section, we discuss the
fundamentals of robust control as an example.

In the following, the transfer function model of the control object will be referred to as
the nominal model to distinguish it from the real control object. The real control target is
denoted as

Pr(s) = (1 + ∆(s)WT (s))P(s) (6.18)
(example of multiplicative error). Here, WT (s) is a certain stable transfer function and
∆(s) is a stable transfer function whose magnitude is less than or equal to 1, representing
uncertainty. In this case, consider the set

P = {Pr(s)(s)|Pr(s) = (1 + ∆(s)WT (s))P(s), |∆(jω)| ≤ 1, ∀ω} (6.19)

of P̃(s). In this case, ∆(s)WT (s) represents the uncertainty. The value of |∆(jω)| is
between 0 and 1 for each frequency, and |WT (jω)| determines the magnitude of uncertainty
for each frequency. Therefore, WT is called the frequency weight function and ∆(s)WT (s)
is called multiplicative uncertainty.

As an example of a control object involving multiplicative uncertainty, consider an ex-
ample with a vertical drive arm. In this case, executing the following code yields Figure
6.8.

1 # Multiplicative Uncertainty
2 from control . matlab import tf , bode , logspace , mag2db , ss2tf , step , feedback
3

4 g = 9.81
5 l = 0.2
6 M = 0.5
7 mu = 1.5e -2
8 J = 1.0e -2
9

10 Pn = tf ([0 , 1] ,[J, mu , M*g*l])
11

12 ## uncertainty
13 delta = np. arange (-1, 1, 0.1)
14 WT = tf ([10 , 0], [1, 150])
15

16 fig , ax = plt. subplots (1, 2, figsize =(15 ,5))
17

18 for i in range (len(delta)):
19 P = (1 + WT* delta [i])* Pn # plant with uncertainty
20 mag , _, w = bode(P, logspace (-3 ,3) , plot= False)
21 ax [0]. semilogx (w, mag2db (mag))
22

23 DT = (P - Pn) / Pn # multiplicative uncertainty
24 mag , _, w = bode(DT , logspace (-3 ,3) , plot= False)
25 ax [1]. semilogx (w, mag2db (mag))
26

27 mag , _, w = bode(Pn , logspace (-3 ,3) , plot= False)
28 ax [0]. semilogx (w, mag2db (mag), color =’k’, lw =1.5)
29 mag , _, w = bode(WT , logspace (-3 ,3) , plot= False)
30 ax [1]. semilogx (w, mag2db (mag), color =’k’, lw =1.5)
31

32 bodeplot_set (ax)
33 ax [0]. set_xlabel (’$\ omega$ [rad/s]’)
34 ax [0]. set_ylabel (’Gain of P [dB]’)
35 ax [0]. set_xlabel (’$\ omega$ [rad/s]’)
36 ax [0]. set_ylim ([-100 , 30])
37 ax [1]. set_ylim ([-100 , 30])

109

38

39 #plt. savefig (’ MultiplicativeUncertainty .png ’, dpi =300)

Listing 6.6: Multiplicative uncertainty

Figure 6.8: Multiplicative uncertainty

On the right is a gain diagram of the uncertainty ∆(s)WT (s), which shows that the
high-frequency gain varies. This means that the response to the high-frequency component
of the input signal varies, suggesting that when the controller gain is increased to improve
quick response, for example, the desired response may not be obtained, i.e., it may become
unstable. In the following, we first summarize the basic issues and then design a controller
K that guarantees the internal stability of the feedback system for all P̃(s) in the set P
(robust stabilization problem). We will also consider the mixed sensitivity problem and
actually design a robust controller in Python.

6.2.2 Summary of basics
6.2.2.1 H∞ norm

The control to keep H∞ norm below a certain value is called H∞ control, and here we
discuss the basics of this control. Incidentally, H is an acronym for Hardy space. A Hardy
space is a space consisting of regular functions satisfying certain properties on an open unit
disk or upper half-plane. The Hardy space of order ∞ for an open unit disc H∞ is defined
by a vector space consisting of bounded regular functions on the disc. In a case like the
one we are considering now and in plain language without fear of misunderstanding, this
means that the closed loop is stable.

Now, the H∞ norm is defined as
∥G(s)∥∞ = sup

ω
|G(jω)| (6.20)

for the closed-loop transfer function G(s) in the case of one-input one-output (SISO) control.
Note that supω can be read as the maximum value maxω. But there is the case where the

110

gain takes the maximum value only in ω → ∞ (although it cannot be realized), so strictly
speaking supω.

Anyway, in the case of SISO, the H∞ norm is the maximum value of the gain of
the closed-loop transfer function.

y = G(s)u (6.21)

for input u and output y, and the H∞ norm satisfies

∥G(s)∥∞ = sup
u

∫∞
−∞ ∥y(t)∥2dt∫∞
−∞ ∥u(t)∥2dt

. (6.22)

Furthermore, it is known that it satisfies

∥G(s)∥∞ = sup
u

output power
input power

. (6.23)

In other words, ∥G(s)∥∞ indicates worst input to worst (maximum) output magni-
tude, and it is sufficient to design the controller so that this is less than a certain value.

On the other hand, in the case of multiple-input multiple-output (MIMO) control, the
transfer function is not a scalar but a matrix G(s), which is an extension of the SISO case,

∥G(s)∥∞ = sup
ω

σ̄{G(jω)}, (6.24)

where σ̄{G(jω)} is the maximum singular value of G(jω). The maximum singular value of
matrix G is the non-negative square rootmaximum of eigenvalue of G∗G, i.e.

√
λmax(G∗G)

when the adjoint matrix of G is G∗. Note that G∗G is a Gram matrix, and it is well known
that all eigenvalues are non-negative real numbers since a Gram matrix is a semipositive
definite Hermitian matrix.

6.2.2.2 Sensitivity function
Now consider the control system shown in Figure 6.9.

K(s) P(s)u z1

z2

y

w

−
−

Figure 6.9: Example of control system

111

In addition,

P(s) : Plant
K(s) : Controller

u : input
y : output
w : external input

If w is the reference of the output y to be controlled in Figure 6.9, the objective of control
is y → w. In other words, if z1 = y − w → 0 (to reduce the deviation between the reference
and the output), the output y can follow the reference w.

Here, the transfer function from w to z1 is

z1 = − 1
1 + P(s)K(s)

w. (6.25)

If we write
S(s) = 1

1 + P(s)K(s)
, (6.26)

then
z1 = −S(s)w. (6.27)

From this, if the gain of ∥S(s)∥∞ is small, Z1 = y − w will be small. In other
words, control to make the output y follow the reference w can be achieved by making
∥S(s)∥∞ (= ∥ − S(s)∥∞) as small as possible. This S(s) is called sensitivity function.

When evaluating a control system focusing on tracking characteristics, it is sufficient to
select

J = ∥S(s)∥∞ (6.28)
as the evaluation function and minimize it, but it is impossible to make S(s) small over the
entire frequency band. To make S(s) small over the entire frequency band means that the
output of the control target follows signals of all frequencies, but in the case of damping
control of a suspension system, for example, there is no need to control at several kHz, and
it is also scary to think of a pendulum that can swing at such frequencies. It is scary to
think of a pendulum that can swing at such a frequency.

Therefore, we can build a control system in which the output follows only the target
signal in a part of the frequency band (basically low frequency), so that the gain of the
sensitivity function S(s)) becomes smaller in this band.

To obtain such a sensitivity function, consider a control specification using a frequency
weighting transfer function WS(s) as expressed in the following equation.

∥WS(s)S(s)∥∞ < 1 (6.29)

This can be thought of as a problem of making the H∞ norm of the transfer function
−WS(s)S(s) from w to z less than 1 in Figure 6.9 (∵ ∥WS(s)S(s)∥∞ = ∥ − WS(s)S(s)∥∞).

112

K(s) P(s) WP(s)u
z

y

w

−
−

Figure 6.10: Frequency weighting transfer function

Assuming that equation 6.29 can be realized, from the definition of the H∞ norm 6.20,

|WS(jω)S(jω)| < 1, ∀ω (6.30)

Namely,
|S(jω)| <

1
|WS(jω)|

, ∀ω. (6.31)

This is depicted in the Bode plot in Fig. 6.11, where the sensitivity function S(s) is
shaped to be less than 1/WS(s) using the frequency weight transfer function. Also, at
frequencies where |WS(jω)| is sufficiently large (/|WS(jω)| is sufficiently small), |S(jω)| ≈
0. For a reference signal in such a frequency band, Z1 = y − w is small. In other words,
the output y follows the target value w.

Figure 6.11: Shaping of sensitivity functions

Thus, the frequency response of the sensitivity function S(s) can be shaped using the
frequency weighting function WS(s).

By the way, we haven’t talked about phase at all for a while, but there is not much of
a problem. In classical control, controllers are basically designed with sufficient phase and
gain margins for the transfer function P(s)K(s), which is defined for the open-loop system.
Then, the sensitivity function S(s) of the closed-loop system is reduced by adjusting the

113

phase and gain margins in the open-loop system. On the other hand, the concept of phase
margin and gain margin is unnecessary here because the sensitivity function S(s), which
is the characteristic of the transfer function of the closed-loop system, is adjusted directly.

6.2.3 Robust stabilization problem
As mentioned at the beginning of this section, when actually constructing a control system,
a nominal model P(s) is constructed for an actual plant Pr(s), and a controller K(s) is
designed based on it. At this time, an error

∆a(s) = Pr(s) − P (s) (6.32)
exists between the control target Pr(s) and the nominal model P(s). Therefore, the con-
troller K(s) should be designed to stabilize both the nominal model P(s) and the actual
control target Pr(s). Such a controller is called a robust controller (i.e., a controller that
can be stabilized even in the presence of model errors).

Here, the actual transfer function of the control target is Pr(s) and the nominal model
transfer function (to be known) is P(s), and the additive error ∆a(s) is used to denote

Pr(s) = P(s) + ∆a(s). (6.33)
Also, assume that the number of unstable poles in Pr(s) and P(s) are equal and that ∆a(s)
is bounded by the known stable transfer function WA(s) in size as

|∆a(jω)| < |WA(jω)| , ∀ω (6.34)
(which would be expressed as σ̄{∆a(jω)} < |WA(jω)| in MIMO model).

The robust stabilization problem is to design a controller K(s) such that the closed-loop
system is stable for all plant Pr(s) expressed in equation 6.33 by any error ∆a(s) satisfying
equation 6.34.

In designing a controller K(s) that stabilizes Figure 6.9, if the additive error ∆a(s) is
considered, the actual closed-loop system is as shown in Figure 6.12.

Figure 6.12: Closed-loop system with additive error

114

From Nyquist’s stability theorem, if∥∥∥∥∥WA(s) K(s)
1 + P(s)K(s)

∥∥∥∥∥
∞

< 1, (6.35)

the closed-loop system in Figure 6.12 is stable regardless of ∆a(s).
As mentioned above, Robust stabilization against additive errors is the problem

of designing the controller K(s) to satisfy equation 6.35 using the H∞ norm.
Since the transfer function from w to z in Figure 6.13 is

− WA(s)K(s)
1 + P(s)K(s)

, (6.36)

robust stabilization against additive error can be considered to be the problem of reducing
the H∞ norm of this transfer function to less than 1. In Figure 6.13, w is the signal
leaving ∆a(s) in Figure 6.12, and z is the signal entering ∆a(s) multiplied by the frequency
weighting transfer function WA.

K(s) P(s)

WA(s)

z w

−
−

Figure 6.13: Robust stabilization problem for additive errors

Now, up to this point, we have considered the error between the actual plant and the
nominal model as additive, but as we saw at the beginning of the section, it is also possible
to consider multiplicative errors.

Pr(s) = (1 + ∆t(s))P(s) (6.37)

Also, as in the additive error case, the number of unstable poles in Pr(s) and P(s) are equal,
and the multiplicative error ∆t(s) is bounded by the size of the stable transfer function
WT , as in A

|∆t(jω)| < |WT (jω)| , ∀ω. (6.38)
In designing a controller K(s) that stabilizes Figure 6.9, if the multiplicative error ∆t(s)

is considered, the actual closed-loop system is as shown in Figure 6.14.

115

Figure 6.14: Closed-loop system when multiplicative error is considered

From Nyquist’s stability theorem, if∥∥∥∥∥WT (s) P(s)K(s)
1 + P(s)K(s)

∥∥∥∥∥
∞

< 1, (6.39)

then the closed-loop system in Figure 6.14 is stable, regardless of ∆t(s).
where

T (s) ≡ P(s)K(s)
1 + P(s)K(s)

(6.40)

is defined to be
∥WT (s)T (s)∥∞ < 1 (6.41)

and Robust stabilization against multiplicative error is the problem of designing
the controller K(s) to satisfy equation 6.41 using the H∞ norm. Note that this
T (s) is called the complementary sensitivity function and is the transfer function from
w to z2 in Figure 6.9.

Also, since the transfer function from w to z in Figure 6.15 is

−WT (s)T (s), (6.42)

robust stabilization against multiplicative error is considered to be a problem of making the
H∞ norm of this transfer function less than 1. In Figure 6.15, w is the signal leaving ∆t(s)
in Figure 6.14, and z is the signal entering ∆t(s) multiplied by the frequency weighting
transfer function WT (s). which is z.

116

K(s) P(s)

WT (s)

z w

−
−

Figure 6.15: Robust stabilization problem for multiplicative errors

6.2.4 Mixed sensitivity problem
From the above, it can be seen that We can design the controller K(s) so that
Focus on target tracking characteristics · · · ∥WS(s)S(s)∥∞ < 1
Focus on robust stability ∥WT (s)T (s)∥∞ < 1

In general, since both target tracking and robust stability are important characteristics
in control, we want to design a control system that takes both into account. However, it is
difficult to find a controller that satisfies both of these separately, so we consider a mixed
sensitivity problem that minimizes γ in the following equation.∥∥∥∥∥

(
WS(s)S(s)
WT (s)T (s)

)∥∥∥∥∥
∞

< γ (6.43)

If we can find a controller K(s) that satisfies this, then even in the case of MIMO systems,
from property

∥Gi(s)∥∞ ≤
∥∥∥∥∥
(

G1(s) G2(s)
G3(s) G4(s)

)∥∥∥∥∥
∞

, i = 1, 2, 3, 4 (6.44)

of the H∞ norm, it becomes

∥WS(s)S(s)∥∞ < 1, ∥WT (s)T (s)∥∞ < 1 (6.45)

and satisfies the desired property. Also, since the transfer function from w to z = (z1, z2)⊤

in Fig. 6.16 is (
−WS(s)S(s)
WT (s)T (s)

)
(6.46)

and ∥∥∥∥∥
(

−WS(s)S(s)
WT (s)T (s)

)∥∥∥∥∥
∞

=
∥∥∥∥∥
(

WS(s)S(s)
WT (s)T (s)

)∥∥∥∥∥
∞

(6.47)

the mixed sensitivity problem can be considered as a problem in which the H∞ norm of
the transfer function from w to z = (z1, z2)⊤ in Fig. 6.16 is less than 1. Here, w in the
figure 6.16 is the reference input when considering the sensitivity function, and is a virtual
signal for evaluating the error when considering the complementary sensitivity function.
Note that the meaning of the signal changes depending on the viewpoint in H∞ control.

117

K(s) P(s)

WT (s) WS(s)

z1z2 w

−
−

Figure 6.16: Mixed sensitivity problem

Furthermore, from the definition of sensitivity function S(s) and complementary sensi-
tivity function T (s), it is

S(s) + T (s) = 1, (6.48)
and S(s) and T (s) cannot be reduced simultaneously at the same frequency. Here,

|S(jω)| <
1

|WS(jω)|
(6.49)

|T (jω)| <
1

|WT (jω)|
(6.50)

is true when the equation 6.45 is satisfied. From this, if WS(jω) ≫ 1 at a certain frequency
ω, then T (jω) ≈ 0, but at this time T (jω) ≈ 1, so |WT (jω)| ≪ 1. In other words, the
frequency bands of WS(s) and WT (s) must be separated.

In general, the multiplicative error ∆t(jω) is often large at high frequency bands, so
|WT (jω)| must be large at high frequency, but can be small at low frequency. On the other
hand, since it is often sufficient to achieve target tracking characteristics at low frequencies,
|WS(jω)| can be large at low frequencies and small at high frequencies. Therefore, when
considering the mixed sensitivity problem, the frequency weight function is often set as
shown in Figure 6.17.

118

Figure 6.17: Frequency weighting transfer function in mixed sensitivity problems

6.2.5 Design of robust control in Python
Based on the above, we describe an example of robust control design using Python. Here,
the mixed sensitivity problem (Eq. 6.43) is solved with the frequency weighting transfer
function as

WS(s) = 1
(s + 0.5)

(6.51)

WT (s) = 10s

(s + 150)
(6.52)

In Python, we can use mixsyn as in K, cl, info = mixsyn(sys, w1, w2, w3). Note
that the expression numbers sys denote the nominal model, and w1 and w3 denote WS(s)
and WT (s), respectively (w2 is assumed to be 1 here). The controller K that minimizes the
γ of equation 6.43 is now obtained, and its value is stored in the return value info.

Now, executing the following code, we find that γ = 0.9527651218302327 < 1, and also
obtain figures 6.18 and 6.19.

1 # Robust Controller
2 from control import mixsyn
3

4 WS = tf ([0 , 1], [1, 1, 0.25]) # sensitivity function
5 WU = tf (1 ,1)
6 WT = tf ([10 , 0], [1, 150]) # complementary sensitivity function
7

8 ## mix sensitivity problem
9 K, _, info = mixsyn (Pn , w1=WS , w2=WU , w3=WT)

10 print (’K =’, ss2tf (K))
11 print (’gamma =’, info [0])
12

13 fig , ax = plt. subplots (1, 2, figsize =(15 ,5))
14

15 ## sensitivity function

119

16 Ssys = feedback (1, Pn*K)
17 mag , _, w = bode(Ssys , logspace (-3 ,3) , plot= False)
18 ax [0]. semilogx (w, mag2db (mag), ls=’-’, label =’S ’)
19 mag , _, w = bode (1/WS , logspace (-3 ,3) , plot= False)
20 ax [0]. semilogx (w, mag2db (mag), ls=’-’, label =’$1/W_S$ ’)
21

22 ## complementary sensitivity function
23 Tsys = feedback (Pn*K, 1)
24 mag , _, w = bode(Tsys , logspace (-3 ,3) , plot= False)
25 ax [1]. semilogx (w, mag2db (mag), ls=’-’, label =’T ’)
26 mag , _, w = bode (1/WT , logspace (-3 ,3) , plot= False)
27 ax [1]. semilogx (w, mag2db (mag), ls=’-’, label =’$1/W_T$ ’)
28

29 for i in range (2):
30 ax[i]. set_ylim (-40, 40)
31 ax[i]. legend ()
32 ax[i]. grid(which =’both ’, ls=’:’)
33 ax[i]. set_xlabel (’$\ omega$ [rad/s]’)
34 ax[i]. set_ylabel (’Gain [dB]’)
35

36 #plt. savefig (’ Sensitivity_and_ComplementarySensitivity_function .png ’, dpi =300)
37

38 ## robust controller
39 fig , ax = plt. subplots (figsize =(7 , 5))
40 ref = 30 # reference angle
41

42 ## performance for the model with uncertainty
43 for i in range (len(delta)):
44 P = (1+ WT* delta [i])*Pn
45 Gyr = feedback (P*K, 1)
46 y, t = step(Gyr , np. arange (0, 5, 0.01))
47 ax.plot(t, y*ref)
48

49

50 ## performance for nominal model
51 Gyr = feedback (Pn*K, 1)
52 y, t = step(Gyr , np. arange (0, 5, 0.01))
53 ax.plot(t, y*ref , lw =1.5 , color =’k’)
54 ax. set_xlim ([0 , 3])
55 plot_set (ax , ’t’, ’y’)
56

57 #plt. savefig (’ RobustController .png ’, dpi =300)

Listing 6.7: Robust control

Figure 6.18: Sensitivity functions and complementary sensitivity functions

120

Figure 6.19: Robust control

From Figure 6.18, we can see that the sensitivity function and the complementary sen-
sitivity function are below the gain diagram of 1

WS
and 1

WT
, respectively.

Figure 6.19 shows the step response when the designed controller is used. From this, it
can be seen that the response follows the target value promptly and that the response does
not change much even with uncertainty.

6.2.6 Solution of H∞ control
Regarding the H∞ control using the H∞ norm, we will discuss its solution in a little more
detail, just to be sure.

6.2.6.1 Standard problem
Various control specifications are possible, but here, we define a standard problem to con-
sider them all together. As mentioned above, the control specification of H∞ control is
defined by the H∞ norm of the transfer function from input w to output z in a closed loop
system. Therefore, the standard problem is shown in Figure 6.20.

121

K(s)

G(s)
zw

yu

Figure 6.20: Standard problem

In the figure, G(s) is called the generalized plant, where the inputs are the external
input w and the operating quantity u and the outputs are the control quantity z and the
observed output y. The state space is assumed to be given by

ẋ = Ax + B1w + B2w (6.53)
z = C1x + D11w + D12u (6.54)
y = C2x + D21w (6.55)

Also, the controller K(s) is represented by the transfer function from the observed output
y to the manipulated quantity u

u = K(s)y. (6.56)
Now, the control objective here is to stabilize the system and minimize (less than 1) the

H∞ norm of the transfer function Gzw(s) from the external input w to the control quantity
z

∥Gzw(s)∥∞ < 1. (6.57)

6.2.6.2 Generalized plant in mixed sensitivity problems
As an example, let us solve the mixed sensitivity problem in equation 6.43 using the
standard problem.

122

Figure 6.21: Solving mixed sensitivity problems using standard problem

If we transform the block diagram, we can see that the systems in Figures 6.16 and 6.21
are equivalent. Therefore, the mixed sensitivity problem in Equation 6.43 is to find the
controller K(s) that makes the H∞ norm of Gzw(s) less than 1.

To distinguish it from the observed output y of the generalized plant, let the output of
the plant P(s) be y′, and the state equation representation of P(s) can be

ẋ = Ax + Bu (6.58)
y′ = Cx (6.59)

At this time, since the input to the frequency weighting transfer function WS(s) is (y′ −w),
the equation of state representation of WS is

ẋWS = AWS xWS + BWS (y′ − w) (6.60)
z1 = CWS xWS + DWS (y′ − w), (6.61)

and WT is denoted by

ẋWT = AWT xWT + BWT y′ (6.62)
z2 = CWT xWT + DWT y′. (6.63)

Using the fact that the observed output of the generalized plant is y = −(y′ − w) and

123

y′ = Cx, the equation of state of the generalized plant is obtained as

d
dt

x

xWS

xWT

 =

A 0 0

BWS C AWS 0
BWT C 0 AWT

x
xWS

xWT

 +

0

−BWS

0

w +

B
0
0

u (6.64)

(
z1
z2

)
=

(
DWS C CWS 0
DWT C 0 CWT

)
x

xWS

xWT

 +
(

−DWS

0

)
w +

(
0
0

)
u (6.65)

y =
(
−C 0 0

)
x

xWS

xWT

 + Iw. (6.66)

By solving the standard problem using this generalized plant, we can design a controller
K(s) that satisfies the mixed sensitivity problem.

6.2.6.3 How to solve standard problem
The standard problem is solved by solving the two Riccati equations

XA + A⊤X + 1
γ2 XB1B

⊤
1 X

− (C⊤
1 D12 + XB2)(D⊤

12D12)−1(D⊤
12C1 + B⊤

2 X) + C⊤
1 C1 = 0

(6.67)

Y A⊤ + AY + 1
γ2 Y C⊤

1 C1Y

− (B1D
⊤
21 + Y C⊤

2)(D21D
⊤
21)−1(D21B

⊤
1 + C2Y) + B1B

⊤
1 = 0

(6.68)

for the generalized plant, checking to see if there exists a controller that satisfies equation
6.57, and if so, finding that controller. The assumption here is

1. (A, B2) is stable

2. (C2, A) is　 detectable

3. D12 is column full rank

4. D21 is row full rank

5.
(

A − jωI B2
C1 D12

)
is column full rank

6.
(

A − jωI B1
C2 D21

)
is row full rank

7. D11 = 0, D22 = 0

124

Of these, 1 and 2 are necessary to stabilize the control system, and 3∼6 is (roughly) valid
if the poles and zeros of the actual control object and weight transfer function are not on
the imaginary axis (on the origin). Also, the solution would be complicated without the
condition 7.

Now, after solving the Riccati equations 6.67 and 6.68, select the solution that satisfies
condition

• X = X⊤ ≥ 0 (quasi-definite)

• Y = Y ⊤ ≥ 0 (quasi-definite)

• ρ(XY) < γ2 (ρ(A) = max |λi(A)|: Maximum eigenvalue)

When X, Y is thus obtained, the H∞ controller is constructed as

dx̂

dt
= Âx̂ + B̂y (6.69)

u = Fx̂ (6.70)
However,

Â = A + γ−2B1B
T
1 X + B2F + ZLy(C2 + γ−2D21B

T
1 X) (6.71)

B̂ = −ZLy (6.72)
F = −(DT

12D12)−1(DT
12C1 + BT

2 X) (6.73)
Ly = −(B1D

T
21 + Y CT

2)(D21D
T
21)−1 (6.74)

Z = (I − γ−2Y X)−1 (6.75)

This solution is called the central solution and is commonly used.
From this central solution 6.69 and 6.70, the H∞ controller is

K(s) = F (sI − Â)−1B̂ (6.76)

6.3 Optimal control
6.3.1 What is optimal control

An optimal control problem is the problem of finding the control input that minimizes
the evaluation function, given a mathematical model of the system expressed in terms of
differential equations, constraints, and an evaluation function.

The basic optimal control is formulated as follows

125

Optimal control

The equation of state ẋ = f(x,u(t)) (x ∈ Rn, u ∈ Rm) and initial conditions x(0) =
x0, equality constraints hi(x,u) = 0, (i = 1, 2, ...q), inequality constraint gi(x,u) ≤
0, (i = 1, 2, ...k), find the one that minimizes the evaluation function

J =
∫ T

0
L(x(t),u(t))dt + V (x(T)) (6.77)

for x(t), u(t).

The first term of the evaluation function is the cost related to the behavior of the system,
such as the speed of response and the magnitude of the input. On the other hand, the
second term is the cost related to the end state, where T is the end time. Equality and
inequality constraints are used to set the upper and lower bounds of the input, the value of
the termination state, and so on. In particular, those with T = ∞ are called infinite-time
optimal control problems, and those with T < ∞ are called finite-time optimal control
problems.

Among optimal control problems, those that minimize the evaluation function

J =
∫ T

0
(x(t)⊤Qx(t) + u(t)⊤Ru(t))dt + x(T)⊤Qfx(T)) (6.78)

in quadratic form for a dynamic system ẋ = Ax + Bu are especially called LQ optimal
control problems. In the LQ optimal control problem, the case where T = ∞ is the optimal
regulator (see 4.4.3).

As a simple example, let us consider the following case of system

ẋ(t) = x(t) + u(t), x(0) = 1 (6.79)

given the constraints −4 ≤ u(t) ≤ 4 on the inputs, x(T) = 0 at the end time of the state,
and the evaluation function

J =
∫ T

0
50x(t)2 + 0.1u(t)2dt (6.80)

to find the control input u(t) (0 ≤ t ≤ T = 0.5) that minimizes J .
For this, use the quadratic cost function to set the evaluation function, and use the

input range constraint and state range constraint functions to describe the con-
straint conditions. The solve opc function is used to solve the optimal control problem.
Based on the above, execute the following code to obtain Figure 6.22.

1 # Optimal Control
2 import control as ct
3 import control . optimal as obc
4

5 P = ct.ss(1, 1, 1, 0) # system
6 sys = ct. ss2io (P) # ss to input / output model
7

8 xf = 0 # reference state / terminal state
9 uf = 0 # reference input

10 Q = 50 # weight for state

126

11 R = 0.1 # weight for input
12

13 cost = obc. quadratic_cost (sys , Q, R, x0=xf , u0=uf) # cost function
14

15 umin , umax = -4, 4
16 constraints = [obc. input_range_constraint (sys , [umin], [umax])]
17 terminal = [obc. state_range_constraint (sys , [xf], [xf])]
18

19 Td = np. arange (0, 0.5 , 0.01) # simulation time
20 x0 = 1 # initial state
21

22 result = obc. solve_ocp (sys , Td , x0 , cost=cost , constraints = constraints , terminal_constraints =
terminal)

23

24 resp = ct. input_output_response (sys , Td , result .inputs , x0)
25

26 fig , ax = plt. subplots (1, 2, figsize =(15 ,5))
27 ax [0]. plot(resp.time , resp. outputs) # output
28 ax [1]. plot(resp.time , resp. inputs) # input
29 plot_set (ax [0] , ’t’, ’x’)
30 plot_set (ax [1] , ’t’, ’u’)
31

32 #plt. savefig (’ OptimalController .png ’, dpi =300)

Listing 6.8: Finite-time optimum control

Figure 6.22: Finite-time optimum control

From this, it can be seen that the state x reaches 0 at time t = 0.5 while satisfying the
input constraints, and the solution to the optimal control problem is obtained. It should
be noted here that since the control target is unstable, it will not reach x = 0 without
applying appropriate inputs.

6.3.2 Model predictive control
For example, when considering the case of controlling the anti-vibration suspension sys-
tem in KAGRA, ground vibration changes from moment to moment, so the optimal filter
also changes from moment to moment. Therefore, the ground vibration from the present
moment to a short time in the future is grasped, and the filter is determined using that

127

condition. By repeating this process, the optimal control filter can always be used. This
method is called model predictive control.

In other words, model predictive control uses a model to predict the motion up to a
finite time in the future and solves a finite-time optimal control problem to determine the
current input. The evaluation function in model predictive control is

J =
∫ t+N

t
L(x(τ),u(τ))dτ + V (x(t + N)). (6.81)

The optimal control problem is solved with x(t) as the initial state at each time. Then,
we can repeat the process using only the initial value u(t) of the obtained control input
u(τ) (t ≤ τ ≤ t + N) as the actual control input · · · · · · . Note that N , which determines
the evaluation interval, is called the prediction horizon.

Model predictive control does not necessarily make the closed-loop system stable because
the evaluation interval is finite. However, since the control input is obtained by moving the
evaluation interval, feedback control can be performed continuously. Another advantage of
model predictive control is that it can handle various control targets and various problems
by setting evaluation functions and constraint conditions.

The following describes an example of executing Model Predictive Control (MPC) in
Python. Here, we target a second-order discrete-time model (see 6.4), and the evaluation
function is quadratic. The Model Predictive Controller is defined using the create mpc iosystem
function, with a prediction horizon of N = 5. Finally, the feedback control system com-
posed of the plant and the MPC is obtained using the interconnect function, and the
time response is calculated.

Based on the above, executing the following code will yield Figure 6.23.
1 # Model Predictive Control
2 import control as ct
3 import control . optimal as obc
4

5 ## plant
6 A = [[0 , 1], [-4, -5]]
7 B = [[0] , [1]]
8 C = np.eye (2)
9 D = np. zeros ([2 ,1])

10 P = ct.ss(A, B, C, D)
11

12 Pd = ct.c2d(P, 0.1 , name=’plant ’)
13 sys = ct. ss2io (Pd)
14

15

16 ## cost function
17 xf = [0, 0] # reference state
18 uf = 0 # reference input
19

20 Q = np.diag ([100 , 1]) # weight on state
21 R = 0.1 # weight on input
22

23 cost = obc. quadratic_cost (sys , Q, R, x0=xf , u0=uf) # cost function
24

25 xmin , xmax = -1.5, 1.5
26 umin , umax = -8, 8
27 constraints = [obc. input_range_constraint (sys , [umin], [umax]) , obc. state_range_constraint (sys , [

xmin , xmin], [xmax , xmax])]
28

128

29

30 ## design of MPC
31 N = 5 # predictive horizon
32 ctrl = obc. create_mpc_iosystem (sys , np. arange (0, N)*0.1 , cost , constraints , name=’controller ’)
33

34

35 ## definition of closed loop
36 loop = ct. interconnect (
37 [sys , ctrl], # connect plant and controller
38 connections =[# signal connection
39 [’plant .u[0] ’, ’controller .u[0] ’],
40 [’controller .x[0] ’, ’plant .y[0] ’],
41 [’controller .x[1] ’, ’plant .y[1] ’]
42],
43 outlist =[’plant .y[0] ’, ’plant .y[1] ’, ’controller .u[0] ’]
44)
45

46

47 ## simulation
48 Td = np. arange (0, 2.1 , 0.1) # simulation time
49 X0 = [1, 0, 0, 0, 0, 0, 0] # initial state ([1 , 0]) + initial value of predictive horizon
50 resp = ct. input_output_response (loop , Td , 0, X0)
51

52 fig , ax = plt. subplots (1, 2, figsize =(15 ,5))
53 ax [0]. plot(resp.time , resp. outputs [0] , label =’x1 ’) # state
54 ax [0]. plot(resp.time , resp. outputs [1] , label =’x2 ’) # state
55 ax [1]. plot(resp.time , resp. outputs [2]) # control input
56

57 ax [0]. hlines (xmin , 0, 2, colors =’black ’, linestyle =’dashed ’)
58 ax [0]. hlines (xmax , 0, 2, colors =’black ’, linestyle =’dashed ’)
59 ax [1]. hlines (umin , 0, 2, colors =’black ’, linestyle =’dashed ’)
60 ax [1]. hlines (umax , 0, 2, colors =’black ’, linestyle =’dashed ’)
61

62 plot_set (ax [0] , ’t’, ’x’, ’best ’)
63 plot_set (ax [1] , ’t’, ’u’)
64

65 #plt. savefig (’MPC.png ’, dpi =300)

Listing 6.9: Model predictive control

Figure 6.23: Model predictive control

129

6.4 Digital implementation
6.4.1 Regarding discretization

To implement the designed controller in a digital system, it is necessary to convert the con-
troller, represented by continuous-time differential equations, into discrete-time difference
equations (discretization).

Since the output from the plant is a continuous-time signal, it is sampled at regular
intervals by an ideal sampler. The control input is determined by the discretized controller,
but the discrete-time signal cannot be directly used as the input to the plant, so it is
converted into a continuous-time signal through a hold circuit.

Figure 6.24: Image of discretization

The following considers methods for converting a continuous-time system

Kc :
ẋ(t) = Acx(t) + Bcy(t)

u(t) = Ccx(t) + Dcy(t)
(6.82)

into a discrete-time system

Kd :
x[k + 1] = Adx[k] + Bdy[k]

u[k] = Cdx[k] + Ddy[k]
(6.83)

specifically focusing on discretization using zero-order hold and discretization using bilinear
transformation.

6.4.1.1 Discretization using zero-order hold
In discretization using zero-order hold, the hold circuit, continuous-time system, and sam-
pler are considered as a unified system, and their behavior is represented as a discrete-time
system.

130

When the sample time is ts, the relationship between the parameters of the continuous-
time system Kc and the discrete-time system Kd is given by

Ad = eActs, Bd =
∫ ts

0
eActdtBc, Cd = Cc, Dd = Dc. (6.84)

The step response of a discrete-time system obtained by discretization using zero-order
hold matches the step response of the original continuous-time system at the sample points,
and thus it is also called a step-invariant transformation.

6.4.1.2 Discretization using bilinear transformation
In discretization using bilinear transformation (Tustin’s transformation), the behavior of
the continuous-time system is approximately represented by a discrete-time system.

When the sample time is ts, the relationship between the parameters of the continuous-
time systemKc and the discrete-time system Kd is

Ad =
(
I + ts

2
Ac

)(
I − ts

2
Ac

)−1
, Bd = ts

2

(
I − ts

2
Ac

)−1
Bc,

Cd = Cc(Ad + I), Dd = BdCc + Dc

(6.85)

In discretization using bilinear transformation, the stability and phase characteristics of
the system are preserved. Additionally, the frequency response matches at ω = 0. This
indicates that Kc(0) = Kd(1).

6.4.2 Methods for discretization in Python
In Python, discretization can be performed using the c2d function, such as sysd = c2d(sys,
ts, method). You can specify the discretization method by setting the method argument,
for example, method=’zoh’.

Based on this, executing the following code will yield Figures 6.25 and 6.26.
1 # Continuous to Discrete Time System
2 from control . matlab import tf , c2d , step , lsim
3

4 P = tf ([0 , 1], [0.5 , 1])
5 print (P)
6

7 ts = 0.2 # sampling rate
8

9 Pd1 = c2d(P, ts , method =’zoh ’) # 0th order hold
10 print (’Discrete Time Sysyem (zoh)’, Pd1)
11

12 Pd2 = c2d(P, ts , method =’tustin ’) # 1st order hold
13 print (’Discrete Time Sysyem (tustin)’, Pd2)
14

15 ## step responce
16 fig , ax = plt. subplots (1, 2, figsize =(15 ,5))
17

18 Tc = np. arange (0, 3, 0.01)
19 y, t = step(P, Tc) # continuous time system
20 ax [0]. plot(t, y)

131

21 ax [1]. plot(t, y)
22

23

24 T = np. arange (0, 3, ts)
25 y, t = step(Pd1 , T) # discrete time system (0 th order hold)
26 ax [0]. plot(t, y, ls=’’, marker =’o’, label =’zoh ’, c=’# ff7f0e ’)
27

28 y, t = step(Pd2 , T) # discrete time system (1 st order hold)
29 ax [1]. plot(t, y, ls=’’, marker =’o’, label =’tustin ’, c=’#2 ca02c ’)
30

31 ax [0]. legend ()
32 ax [1]. legend ()
33

34 #plt. savefig (’ TimeResponse_of_DiscreteTimeSystem_step .png ’, dpi =300)
35

36

37 ## apply input
38 fig , ax = plt. subplots (1, 2, figsize =(15 ,5))
39

40 Tc = np. arange (0, 3, 0.01)
41 Uc = 0.5 * np.sin (6* Tc) + 0.5 * np.cos (8* Tc)
42 y, t, x0 = lsim(P, Uc , Tc) # continuous time system
43 ax [0]. plot(t, y)
44 ax [1]. plot(t, y)
45

46 T = np. arange (0, 3, ts)
47 U = 0.5 * np.sin (6*T) + 0.5 * np.cos (8*T)
48 y, t, x0 = lsim(Pd1 , U, T) # discrete time system (0 th order hold)
49 ax [0]. plot(t, y, ls=’’, marker =’o’, label =’zoh ’, c=’# ff7f0e ’)
50

51 y, t, x0 = lsim(Pd2 , U, T) # discrete time system (1 st order hold)
52 ax [1]. plot(t, y, ls=’’, marker =’o’, label =’tustin ’, c=’#2 ca02c ’)
53

54 ax [0]. legend ()
55 ax [1]. legend ()
56

57 #plt. savefig (’ TimeResponse_of_DiscreteTimeSystem .png ’, dpi =300)

Listing 6.10: Time response of discrete-time systems

Figure 6.25: Time response of discrete-time systems (step response)

132

Figure 6.26: Time response of discrete-time systems

The left side represents discretization using zero-order hold, and the right side repre-
sents discretization using bilinear transformation. From Figure 6.25, it can be seen that
discretization using zero-order hold better preserves the characteristics of the continuous-
time system in terms of the step response. On the other hand, Figure 6.26 shows that when
the input u(t) = 0.5 sin(6t) + 0.5 cos(8t) is applied, discretization using bilinear transfor-
mation is closer to the response of the continuous system.

Additionally, to examine the frequency characteristics of the discretized model, executing
the following code will yield Figure 6.27.

1 # Bode Plot for Discrete Time System
2 from control . matlab import bode , logspace , linspace , mag2db
3

4 fig , ax = plt. subplots (2, 1, figsize =(7 , 7))
5

6 ## continuous time system
7 mag , phase , w = bode(P, logspace (-2 ,2) , plot= False)
8 ax [0]. semilogx (w, mag2db (mag), label =’continuous ’)
9 ax [1]. semilogx (w, np. rad2deg (phase), label =’continuous ’)

10

11 ## discrete time system (0 th order hold)
12 mag , phase , w = bode(Pd1 , linspace (0.01 , np.pi/ts -0.001 , 1000) , plot= False)
13 ax [0]. semilogx (w, mag2db (mag), label =’zoh ’)
14 ax [1]. semilogx (w, np. rad2deg (phase), label =’zoh ’)
15

16 ## discrete time system (1 st order hold)
17 mag , phase , w = bode(Pd2 , linspace (0.01 , np.pi/ts -0.001 , 1000) , plot= False)
18 ax [0]. semilogx (w, mag2db (mag), label =’tustin ’)
19 ax [1]. semilogx (w, np. rad2deg (phase), label =’tustin ’)
20

21 ## Nyquist frequency
22 ax [0]. axvline (np.pi/ts , lw =0.5 , c=’k’)
23 ax [1]. axvline (np.pi/ts , lw =0.5 , c=’k’)
24

25 bodeplot_set (ax , 3)
26

27 #plt. savefig (’ BodePlot_for_DiscreteTimeSystem .png ’, dpi =300)

Listing 6.11: Frequency characteristics of discrete-time systems

133

Figure 6.27: Frequency characteristics of discrete-time systems

From Figure 6.27, it can be observed that at low frequencies, the characteristics of the
continuous-time and discrete-time systems are almost the same, but at high frequencies,
the characteristics differ. In particular, the phase characteristics of the system discretized
using zero-order hold are significantly different from those of the continuous-time system,
whereas the phase characteristics of the system discretized using bilinear transformation
are closer to those of the continuous-time system.

134

Bibliography

[1] 南祐樹『Pythonによる制御工学入門』オーム社（2019）.

[2] 美多勉『H∞制御』 昭晃堂（1994）.

135

	1 INTRODUCTION
	1.1 About this document
	1.2 What is control?
	1.2.1 Feedback control
	1.2.2 Control system design concept

	1.3 Preparation of Python
	1.3.1 Library
	1.3.2 Functions

	2 MODELING
	2.1 Representation of dynamic systems
	2.2 Transfer function
	2.2.1 What is transfer function?
	2.2.2 Properness
	2.2.3 Python script

	2.3 State-space equation
	2.3.1 What is state-space equation?
	2.3.2 Derivation of the ss equation
	2.3.3 Python script

	2.4 Relationship between TF and SS
	2.4.1 Transformation between TF and SS
	2.4.2 Python script

	2.5 Block diagram
	2.5.1 Series, parallel and feedback
	2.5.2 Python script

	3 BEHAVIOR OF PLANT
	3.1 Time response
	3.1.1 First-order lag system
	3.1.1.1 Python script
	3.1.1.2 calculation of time response

	3.1.2 Second-order lag system
	3.1.2.1 Python script
	3.1.2.2 Calculation of time response

	3.1.3 Time response in ss model

	3.2 Stability and system behavior
	3.2.1 Stability
	3.2.1.1 Input-output stability
	3.2.1.2 Asymptotic stability

	3.2.2 Relationship between poles and system behavior

	3.3 Frequency response
	3.3.1 First-order lag system
	3.3.2 Second-order lag system

	4 SYSTEM DESIGN (CL)
	4.1 Control specification for closed loop
	4.1.1 Stability
	4.1.2 Time response
	4.1.3 Frequency response
	4.1.4 Summary

	4.2 PID control
	4.2.1 P control
	4.2.2 PD control
	4.2.3 PID control
	4.2.4 Improved PID control

	4.3 Gain tuning
	4.3.1 Ultimate sensitivity method
	4.3.2 Model matching

	4.4 State feedback control
	4.4.1 Pole placement
	4.4.2 Controllability and observability
	4.4.2.1 Controllability
	4.4.2.2 Observability

	4.4.3 Optimal regulator
	4.4.4 Integral servo system

	5 SYSTEM DESIGN（OL)
	5.1 Control specification for open loop
	5.1.1 Stability
	5.1.2 Quick-response
	5.1.3 Damping
	5.1.4 Steady-state properties
	5.1.5 Summary

	5.2 PID control (open-loop characteristics)
	5.2.1 P control
	5.2.2 PI control
	5.2.3 PID control
	5.2.4 Summary

	5.3 Phase lead and lag compensation
	5.3.1 Phase lag compensation
	5.3.2 Phase lead compensation
	5.3.3 Control system design for vertical drive arm

	6 ADVANCED CONTROL
	6.1 Observer
	6.1.1 Full-order state observer
	6.1.2 Disturbance observer
	6.1.3 Stationary Kalman filter

	6.2 Robust control
	6.2.1 About robust Control
	6.2.2 Summary of basics
	6.2.2.1 H norm
	6.2.2.2 Sensitivity function

	6.2.3 Robust stabilization problem
	6.2.4 Mixed sensitivity problem
	6.2.5 Design of robust control in Python
	6.2.6 Solution of H control
	6.2.6.1 Standard problem
	6.2.6.2 Generalized plant in mixed sensitivity problems
	6.2.6.3 How to solve standard problem

	6.3 Optimal control
	6.3.1 What is optimal control
	6.3.2 Model predictive control

	6.4 Digital implementation
	6.4.1 Regarding discretization
	6.4.1.1 Discretization using zero-order hold
	6.4.1.2 Discretization using bilinear transformation

	6.4.2 Methods for discretization in Python

