LVK collaboration meeting Mar. 11 (2024)

KA RA Damping Control Lingo Noise Reduction for KAGRA Suspension

KAGRA Suspensions

Problems

Solution (Future Works)

Masahide TAMAKI

the University of Tokyo / Institute for Cosmic Ray Research

Type-A Suspension (for main sapphire mirror)

Cryostat & Cryogenic Payload

© KAGRA Collaboration / Rey. Hori [T. Ushiba, et. al., Class. Quantum, 38, 085013, (2021)]

Cryogenic Payload

Platform (PF)

Marionette (MN) & Recoil mass

Intermediate mass (IM) & Recoil mass

Test mass (TM) & Recoil mass

Sensors & Actuators

Reflective photosensor

Measure the relative displacement of the mass and recoil mass

Optical Lever

the movement of the mass relative to the ground

Coil-magnet actuator

HR side

Apply the force to the mass

Reflective Photosensor

- Monitor the changes in relative distance as changes in light intensity
- Wide dynamic range for use at cryogenic temperature

PD: InGaAs LED: InGaAsP

Direct bandgap for cryogenic use

> No energy assistance by phonons

Conduction

band

AGENDA

KAGRA Sensitivity in <u>O3GK</u>

Improvement for O4a

For example...

Before we lock the interferometer, damping control is on (Blue line)

After we lock the interferometer, we apply elliptic filter to reduce the gain above ~ 0.2 Hz for noise reduction (Red line)

Improvement for O4a

Some updates on control loop (apply elliptical low-pass filter above 10 Hz in observation phase) was done for Type-A suspension (except for ETMX)

As for the suspension of which we improved the loop, damping control noise successfully reduced

Improvement for O4a

Problem - Damping Control Noise - 13

Problem - Damping Control Noise - 14

How can we reduce damping control noise?

Less noise sensor (compare to reflective photosenser)

under consideration to develop

*we should consider cryogenic operation

"Better" sensor "Better" control

 \supset Optimize the trade-off between damping performance & control noise

- tuning the controller
- some advanced techniques etc...

Modal Damping - one of the candidates for improvement -

each vibration mode

Modal Damping one of the candidates for improvement -

Optimization of damping control for multi-DoF system is complex Single DoF resonance problem

Decouple the oscillations of the system into modes

Gain tuning becomes easy

(For example...)

Gain can be increased for modes that require damping and decreased for those that don't require for noise performance → Automation according to the daily seismic noise is also possible

Result of Simulation

Modal damped top mass to top mass longitudinal TF

24

Conclusion & Outlook

✓ Suspension damping control has been updated from O3GK.

- V However, it still need to be improved to achieve O5 target sensitivity
- Simulation of new control and preparation of test are ongoing

Dummy cryogenic payload (in preparation) → We are considering to develop new cryogenic sensor and test together

Coil-magnet Actuator30Coil (RM chain)+ SmCo magnet (TM chain)

Coils are also vibration isolated

A magnetic field is generated by passing an electric current through the coil

→ Apply the force to the magnet

Magnetization does not decrease significantly even at cryogenic temperatures

Magnet

Local Damping Control

Detect the motion of the mass by local sensor

> Send signal to the actuator through the controller

Applies a force proportional to the velocity of the mass to suppress the vibration

Calculation for Mode Decomposition

• Cartesian EoM of suspension $\vec{M}\vec{\vec{x}} + \vec{K}\vec{\vec{x}} = \vec{F}$

• Coordinate transformation $\vec{x} = \mathbf{\Phi} \vec{q}$

• Modal Equation $\mathbf{M}_{\mathrm{m}} \ddot{\vec{q}} + \mathbf{K}_{\mathrm{m}} \vec{q} = \vec{F}_{\mathrm{m}}$ * subscript "m" means they are in modal basis

 \vec{x} :displacement \vec{q} :modal displacement \vec{F} :Control force M:Mass matrix K:Stiffness matrix Φ :Eigen vector of matrix M⁻¹K

How to Decompose the Mode 33 Equation of Motion: $M\ddot{x} + Kx = 0$ Fourier transform $(-\boldsymbol{\omega}^2 \mathbf{M} + \mathbf{K})\widetilde{\boldsymbol{x}}(\boldsymbol{\omega}) = 0$ $ightharpoonup \lambda = \omega^2, \phi = \widetilde{x}$ $(\mathbf{K} - \boldsymbol{\lambda}\mathbf{M})\boldsymbol{\phi} = 0$ Eigenvector: ϕ , Eigenvalue: λ

How to Decompose the Mode

M: positive definite matrix K: positive semi-definite matrix

real symmetric

 \sum eigenvectors of ϕ are new basis (modal basis)

State Estimator

State space equation

X: system's state
 (position, velocity, etc...)
u: input

y: measurement

State estimator

 $\hat{x} = A\hat{x} + Bu$ $\hat{y} = C\hat{x}$

estimated state will be included in the feedback control

Given the same input signal u, and produce the estimation \widehat{x}

The estimate of output $\widehat{\mathbf{y}}$ is

compared to y

Error: $e = y - \hat{y} = y - C\hat{x}$ $\int to minimize e, a term proportional$ $<math>\int to the error is added to \hat{x}$

 $\dot{\widehat{x}} = A\widehat{x} + Bu + L(y - C\widehat{x})$: State Estimator

What is Linear Quadratic Regulator? Automatic algorithm which finds optimal feedback for linear systems in state-space form

 \hat{x} : Displacement State \dot{x} : Velocity State

System

n states, m inputs

 $A: n \times n, B: n \times m, K: m \times n$

Assumption (Completely) Controllable $\underbrace{100}{02}$ We have knowledge of all states x

 $x^{\mathrm{T}}x \to 0$ • make the size of *u* very small

(to minimize the noise / keep actuator in range)

 $u^{\mathrm{T}}u \rightarrow 0$

$$\sum Total Cost \quad J = \int_0^\infty (x^T x + u^T u) dt$$

Cost Function

$$J = \int_0^\infty (x^{\mathrm{T}} x + u^{\mathrm{T}} u) \mathrm{d}t$$

We want
$$x^T x \rightarrow 0$$
& $u^T u \rightarrow 0$ are true at all time

care about the size of
some states / actuators than others

 $J = \int_{0}^{\infty} (x^{T} Q x + u^{T} R u) dt$ $Q = Q^{T} \ge 0, R = R^{T} \ge 0$ Q, R: weighting function

Minimize this with Linear algebra Calculs of variations

 \sim

$$J = \int_{0}^{\infty} (x^{T}Qx + u^{T}Ru)dt$$

$$\bigotimes Parseval's \text{ theorem}$$

$$J = \frac{1}{2} \int_{-\infty}^{\infty} (x(-j\omega)^{T}Qx(j\omega) + u(-j\omega)^{T}Ru(j\omega))d\omega$$

we want treat these in frequency region

$$J = \frac{1}{2} \int_{-\infty}^{\infty} (x(-j\omega)^{\mathrm{T}} Q x(j\omega) + u(-j\omega)^{\mathrm{T}} R u(j\omega)) d\omega$$

$$=\frac{1}{2}\int_{-\infty}^{\infty}(\overline{x}(-j\omega)^{\mathrm{T}}\overline{x}(j\omega)+\overline{u}(-j\omega)^{\mathrm{T}}\ \overline{u}(j\omega))\mathrm{d}\omega$$

Filtering function

$$\dot{\chi} = E_x \chi + F_x x$$
$$\dot{\mu} = E_u \mu + F_u u$$

Filtered states

$$\sum \quad \bar{x} = G_x \chi + H_x x$$
$$\bar{u} = G_u \mu + H_u u$$

 $-\infty$

$$J = \frac{1}{2} \int_{-\infty}^{\infty} (\overline{x}(-j\omega)^{\mathrm{T}} \overline{x}(j\omega) + \overline{u}(-j\omega)^{\mathrm{T}} \overline{u}(j\omega)) \mathrm{d}\omega$$

$$J = \int_0^\infty (x^T H_x^T H_x x + 2 x^T H_x^T G_x \chi + \chi^T G_x^T G_x \chi)$$
$$+ \mu^T G_u^T G_u \mu + 2\mu^T G_u^T H_u u + u^T H_u^T H_u u) dt$$

$$J = \int_0^\infty (x^T H_x^T H_x x + 2 x^T H_x^T G_x \chi + \chi^T G_x^T G_x \chi)$$
$$+ \mu^T G_u^T G_u \mu + 2\mu^T G_u^T H_u u + u^T H_u^T H_u u) dt$$
$$= \int_0^\infty (z^T Q z + u^T R u + 2z^T N u) dt$$

$$J = \int_0^\infty (z^T Q z + u^T R u + 2 z^T N u) dt$$

$$\left[\begin{array}{c} z = \begin{bmatrix} x \\ \chi \\ \mu \end{bmatrix} & Q = \begin{bmatrix} H_x^T H_x & H_x^T G_x & 0 \\ G_x^T H_x & G_x^T G_x & 0 \\ 0 & 0 & H_x^T H_x \end{bmatrix} \\ R = H_u^T H_u & N = \begin{bmatrix} 0 \\ 0 \\ G_u^T H_u \end{bmatrix} \\ \end{array} \right]$$

Filtering state is augmented and pluged into the LQR algorithm

 $\dot{z} = \overline{A}z + \overline{B}u$

$$\overline{A} = \begin{bmatrix} A & 0 & 0 \\ F_x & E_x & 0 \\ 0 & 0 & E_u \end{bmatrix} \quad \overline{B} = \begin{bmatrix} B \\ 0 \\ F_u \end{bmatrix}$$

LQR in Frequency Domain **Control law** \rightarrow solve this ARE $P\overline{A} + \overline{A}^{T}P - (P\overline{B} + N)R^{-1}(P\overline{B} + N)^{T} + Q = 0$ $\overline{u} = R^{-1} (P\overline{\overline{B}} + N)^{\mathrm{T}} z$ $\rightarrow \rightarrow \rightarrow \rightarrow$

feedback gain: $K = R^{-1} (P\overline{B} + N)^{T}$

State Estimator 50 for Modal Damping modal system: $\dot{q} = A_{\rm m}q + B_{\rm m}u$ $x = \phi q$ y = Cx $\dot{\hat{q}} = A_{\rm m}\hat{q} + B_{\rm m}u - L_{\rm m}(C\hat{x} - y)$ estimator: estimator error: $\tilde{q} = \hat{q} - q$ $\dot{\tilde{q}} = A_{\rm m}\tilde{x} - L_{\rm m}C_{\rm m}\tilde{q}$

State Estimator for Modal Damping sensor signal $\dot{\tilde{q}} = A_{\rm m}\tilde{x} - L_{\rm m}C_{\rm m}\tilde{q} \quad \sum \quad \dot{\xi} = A_{\rm m}^T\xi + C_{\rm m}^Tu$ transpose fictious system which has the same dynamics Filtering function and Filtered u $\underline{\dot{\mu}} = E\mu + F^T u \qquad \overline{u} = G\mu + Hu$

Augmented state space

$$\dot{z} = \bar{A}z + \bar{B}u \quad \begin{bmatrix} z = \begin{bmatrix} \xi \\ \mu \end{bmatrix} \quad \overline{A} = \begin{bmatrix} A_m^T & \mathbf{0} \\ \mathbf{0} & E \end{bmatrix} \quad \overline{B} = \begin{bmatrix} C_m^T \\ F \end{bmatrix}$$

State Estimator for Modal Damping

Augmented feedback gain

 $\begin{bmatrix} \overline{L} = \begin{bmatrix} L_q^T & L_u^T \end{bmatrix} = \operatorname{lqr}(\overline{A}, \overline{B}, Q, R, N)$

$$\dot{z} = \bar{A}z - \bar{B}Lz \qquad Q = \begin{bmatrix} Q_{m} & 0 \\ 0 & G^{T}G \end{bmatrix} \qquad \begin{array}{c} \text{mode reconstruction cost} \\ \begin{bmatrix} H_{x}^{T}H_{x} & H_{x}^{T}G_{x} \\ G_{x}^{T}H_{x} & G_{x}^{T}G_{x} \end{bmatrix} \\ R = H^{T}H \qquad N = \begin{bmatrix} 0 \\ G_{u}^{T}H_{u} \end{bmatrix}$$