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KAGRA Suspensions 2
KAGRA ETMY,
*
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For BS & SRs SR2

SRM
Photo
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Although omitted in the figure,
IMC/OMC are suspended

by mini suspension

called Type-C




Type-A Suspension

(for main sapphire mirror)

KAGRA Layout
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Cryostat & Cryogenic Payload

Cryostat Cryogeni¢ Payload
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Cryogenic Payload

Platform (PF)
Marionette (MN)

& Recoil mass

Intermediate mass (IM)
& Recoil mass

Test mass (TM)
& Recoil mass



Sensors & Actuators 6

Reflective photosensor

> Measure

the relative displacement
of the mass and recoil mass

‘% (L, P, Y)
TM Chain PF RM Chain

Reflective photosensorx6
(L, T,V,R,PY)

Optical Lever
D> Measure

..................................................................................... the movement Of the mass
relative to the ground

>> Apply the force to the mass

Optical Lever



Reflective Photosensor 7

TARGET .

PD

LED

PD: InGaAs LED:

2> Direct bandgap

for cryogenic use

No energy assistance

by phonons

Monitor the changes in relative distance
as changes in light intensity

Wide dynamic range
for use at cryogenic temperature

InGaAsP

Direct bandgap Indirect bandgap
4 4
o o
HC-) Conduction HC-) Conduction
> band = > band
o (o)) phonon
} }
o o AN
< LeloneEs = Valence
L e band i e
band
> >

Wavenumber of e - Wavenumber of e



AGENDA

KAGRA Suspensions

damping control noise
during O3GK & O4a
ﬁ Problems




KAGRA Sensitivity in O3GK

—
o
|
—
w

—
o
I
—
~

N
:
~N
E
+—
o
0
=
0
0
=
oF
2
A

Sensitivity

— Summation of known noises
Type-A control noise

—— Type-B control noise

—— Type-Bp control noise
MICH coupling
PRCL coupling

— Acoustic noise

DAC noise

Mirror thermal noise

Suspension thermal noise
===+ Shot noise

-—- Radiation pressure noise -

Laser frequency noise
—— Laser intensity noise
OMC PD dark noise

Frequency [Hz]

Observing run
with GEO600

(Apr. 7 - Apr. 21, 2020)
Below 100 Hz

5% Limited by
local damping
control noise

10 ~ 50 Hz: Type-A
50 ~ 100 Hz: Type-Bp

[ H. Abe et al., PTEP, (2822) ]




Improvement for O4a 10
For example...

Before we lock | -
the interferometer, WE ___ opservation-Ready
damping control is on - Observation

(Blue line) ' '

I

After we lock the interferometer,

we apply elliptic filter to

reduce the gain above ~ 0.2 Hz e ' 2
. . UGF:

for noise reduction 019 H, Frequency [Hz]

(Red line) ex) open loop TF of damping control ITMX P

Frequency [Hz]

I
o
Q
©
—
Q
n
©
<
o




Improvement for O4a

Damping control noise
before improvement
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Freqgency [HZz]

damping control noise for Type-A suspension (except for EX)

Some updates on
control loop

(apply elliptical
low-pass filter above 10 Hz
in observation phase)

was done for

Type-A suspension
(except for ETMX)

N

As for the suspension
of which we improved
the loop,

damping control
noise successfully
reduced




Improvement for O4a

DARM improvement in
low-frequency region

03GK (~ 1.0 Mpc)

W=

O4a (~ 1.3 Mpc)

102 103
Frequency [Hz]

10-1°
1012
10~ 14
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Problem - Damping Control Noise - 13

Damping Lontrol Noisef

~|during 0Ya
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Problem - Damping Control Noise - 14
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KAGRA Suspensions
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How can we reduce

ﬁ.o damping control noise?

“Better” sensor |“Better” control

>» Less noise sensor | 3» Optimize the
(compare to ; trade-off between
reflective photosenser) i damping performance

& control noise

under consideration |§
to develop

- tuning the controller

*we should consider
cryogenic operation

- some advanced techniques
etc...




Modal Damping

17

- one of the candidates for improvement -

Conventional control in KAGRA Modal damping control

o

Feedback for each stage

W
W\/\

Feedback for
each vibration mode




Modal Damping 18

- one of the candidates for improvement -

Optimization of > Single DoF resonance problem
damping control ® \ 4
for multi-DoF system Controller & its optimization
is complex should be simpilified

Decouple the oscillations of the system into modes




Gain tuning becomes easy

NOT damped Top mass to Top mass longitudinal transfer function
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Determine the gain for each mode respectively |

10°
FREQUENCY [HZz]

z
SN
E
—
Z
L
=
O
<
el
o.
L
(]

(For example...)

Gain can be increased for modes that require damping and
decreased for those that don’t require for noise performance

- Automation according to the daily seismic noise Is also possible
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: CARTESIAN or :
1 COORDINATES - :
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fahAe actuator We need to know the motion of

(only top mass) every stage for modal damping,

(q)—l)T but don’t want to include noisy

CELIEL IR IELEL LU sensor effect as much as possible

MODAL DAMPING
CONTROLLER

MODAL G1,G5,G3,G,4 g
COORDINATES

20



CARTESIAN local sensor
COORDINATES

S

actuator
(only top mass)

STATE
ESTIMATOR

(coordinate transformation)

MODAL DAMPING
CONTROLLER

MODAL G1,G;,G3,G4
COORDINATES

[l
—



local sensor

State Estimator

State space of closed loop system STATE
ESTIMATOR

Designed with LQR




Simulation 23

modal damping control with state estlmator

//;/,’”’N_ B B g Sty
Dummy cryogenic payload > 7, - 0 0
(in preparation) T

S U M CON in Mathematica

spension odel  structor

was used
to construct the model of cryogenic payload
and get its state space matrix

[* T. Sekiguchi, JGBW-T158329, (2815)]




Result of Simulation

Modal damped top mass to top mass longitudinal TF

—Not Damped -
—Damped
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Result of Simulation

TM response to impulse at suspension point

bl \ \ I \ W I \ I
| [ ]

1/e decay time

just check
if the vibration subsides quickly enough|
(and approximate length of time to wait)

3
S,
0
1
S
=
=
o
o
=

: designed (=10 s) : KAGRA requirement |

: in this simulation : (Not a number with .

';' (result=10.2s) | : any particular reason)

10 20 30 40 50 60 70 80 90 100
Time [sec]




Result of Simulation

TM noise response (for dummy cryogenic payload)

Seismic noise

" at KAGRA site
| Noise reperformance (JGW-T1910436,

K. Miyo)

with no control
with current control

with modal control
+ state estimator

noise requirement

10° 101

Frequency [Hz]




Conclusion & Outlook 27

v Suspension damping control
has been updated from O3GK.

v However, it still need to be improved
to achieve O5 target sensitivity g

v Simulation of new control and
preparation of test are ongoing

Dummy cryogenic payload (in preparation) > | v &

We are considering to develop
new cryogenic sensor and test together
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Coil-magnet Actuator 30

Coil (RM chain)+ SmCo magnet (TM chain)

Coils are also vibration isolated @ Magnetization does not
A magnetic field Le decrease significantly

is generated by 3 e even at cryogenic temperatures
passing an

electric current el : standoff
through the coil

- Apply the force
to the magnet




Local Damping Control 31
O Detect the motion
of the mass
by local sensor

Send signal to
the
through the controller

O Applies a force
proportional to the
velocity of the mass
to suppress the vibration

)

Sensor

Controller



Calculation for

Mode Decomposition

* Lartesian EoM of suspension

Mx+Kx=F

™) 4
4

Modal Equation

M, G+K,G=F,

*subscript “m” means

they are in modal basis

—_

32

X :displacement c_i :modal displacement [ :Control force

M:Mass matrix K:Stiffness matrix
& :Eigen vector of matrix M—1K

For the aplication to real system,

signals are also required

transformation related to sensor/actuator




How to Decompose the Mode
Equation of Motion: Mx + Kx = 0

S Fourier transform
(—w*M + K)¥(w) = 0

VY A=w?, =%
(K—AM)¢p = 0

I

Eigenvector: ¢, Eigenvalue: )

33



How to Decompose the Mode 34

M: positive definite matrix == :
real symmetric

K: positive semi—definite matrix —

>>» eigenvectors corresponding to distinct eigenvalues
are always orthogonal to one another

> eigenvectors of () are new basis (modal basis)



State Estimator 35

X =Ax+ BU <o dynamics f = Af + Bu 3?.*."322?,‘1.3*3;‘3

y = (x \_> uU=—K=x y =(CX in the feedback control

X:. system’s state Given the same input signal u,
(position, velocity, etc...) and produce the estimation X

u: input The estimate of output § is

y: measurement compared to y

Error: e=y—-y=y—C(CX
To minimize e, a term proportional
to the error is added to x

X = AX + Bu + L(y — CX) : State Estimator



___________________________________ i
CARTESIAN local sensor | 36

COORDINATES

F

. . . . actuator

(only top mass)

‘ ((l) —1)T\
(coordinate transformation)

MODAL DAMPING
CONTROLLER

MODAL G1,G;2,G3,G4
COORDINATES

We can easily

add in other
sensors with
(almost) no
impact on stability

¥

Useful for
damping of the
lowest freq. mode

ESTIMATOR

couple
more to test mass
than to top mass



T‘? What is >
Linear Quadratic Regulator?
Autcmahc algorithm
which finds optimal feedback
.0 for linear systems in state-space form

x : Displacement State
X : Velocity State

f—0Oxx | f :Actuation




OID@ What is 38

Linear Quadratic Regulator?

Automahc algorithm
which finds optimal feedback

~o for linear systenfs in state-space form

Minimize the size of state vector

- In the least time
- with minimum control effort




System 39
n states, m inputs

X X1 u,
p — 7 u = :
xn un
A:nXn, B: nXm,
LQR feedback gain K- mxn
Assumption
O (Completely) We have
Controllable knowledge of all states x




@ Our Goal Here 40

> | -+ make the size of x very small

T

x'x—-0

- make the size of u very small

(to minimize the noise / keep actuator in range)

T

uu-0

>>> Total Cost | = f (x"x +ulwdt
0



Cost Function

J =f (x"x +ulwdt
0

We want

xIx->0 & u

are true at all time

Tu->o0

\/ care about the size of
/ some states / actuators than others

J =f (x"Qx + u"Ru)dt
0

Q=Q">0,R=R">0
Q, R: weighting function

Minimize this with
- Linear algebra 5
- Calculs of variations

41



T{;?) How can we find
f the feedback gain with :

il

42

Solve ARE below

(Algebraic Riccati Equation)
PA+ A'P —PBR 'B'P+Q =0
§>§> Calculate P K minimizes J
>>»> Feedback gain K = R"1BTP
>>»> Control input u=-R 1BTPx



Kel 43
in Frequency Domain

J =f (x'Qx + u'Ru)dt
0

M Parseval’s theorem

1 CO
J=3| o) ex(e) + u(—jo) RuGe))de

we want treat these in frequency region



LQR

in Frequency Domain

A4

J=5 [ GEoToxjw) +u-jw) Ruje)de

(Jw)

u(—jo)' u(jw))dw

-5 | @)

Filtering function

+ F x

X=Ex

u=Eu-

- Fou

Filtered states

2 X=Gux

+ H, x

u:Gu:u_

- H u



Kel
in Frequency Domain

1 00
J=5| G EGw) +a-je) age)de
gg Parseval’s theorem

J = f (x'TH H x +2x"HLG,.x + ¥'GLG,x
0

+ul'GlG u+2u"GIH u + u"HIH uwdt

45



Kel 46
in Frequency Domain

J = f (XTHTH, x + 2 X" HIG x + X" GG x
0

+ul'GlG u+2u"GIH, u + u"HIH u)dt

= f (z"Qz + u"Ru + 22" Nu)d¢t
0



Kel
in Frequency Domain

J = f (z2"Qz + u'Ru + 22" Nu)dt
0

r

X HIH, HLG, 0
z=|x| Q=|6lH, GLG, 0
H 0 0 HIH,
0
R=H'H, N=| O
L Gy H,




Kel
in Frequency Domain

Filtering state is augmented
and pluged into the LQR algorithm

z=Az + Bu

r D

A 0 0 B
A=|F, E, o| B=]|o0
0 0 E, F,



Kel
in Frequency Domain

Control law
> solve this ARE

PA+A"™P — (PB+ N)R"Y(PB+N)'+Q =0
> u=R 1Y(PB+N)'z
feedback gain: K = R~1(PB + N)!

49



State Estimator 50
for Modal Damping

modal system: ¢=A4,9+B,u x=¢q y=~(x

estimator: q=A,q+B,u—L,(CZ—y)

estimator error: q

67
A %—L C.§

Q-



State Estimator 51

fOI" MOdGI Damping sensor

. e signal

g=A X—L C g > &=AT&+CTu
transpose fictious system

which has the same dynamics

Filtering function and Filtered u
n=Eu+F'u u=Gu+ Hu

Augmented state space

_ _ ' _ T _ T 1
7 = Az + Bu z=[€] Az[“‘m 0] Bz[cm]
T 0 E Fl




State Estimator 52
for Modal Damping

Augmented feedback gain

L = [LE LZ] = 1qr(4,B,Q,R,N)

- 0 0 - mode reconstruction cost 1
z=Az—BLz Q= [CO;) ] HLH, HIG,

G'G
GiH, GG,

0
— gT —
R=t'H V=g,



