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2KAGRA Suspensions
Type-A (9 stages・13.5 m)

Type-B

For main mirrors
Tower + Cryogenic Payload

Type-Bp
〜 〜

〜〜

Photo
Detector

Laser

KAGRA
Optical Layout

~~

For BS & SRs

For PRs

ground

cryostat

Although omitted in the figure, 
IMC/OMC are suspended 
by mini suspension 
called Type-C



3Type-A Suspension 

Type-A 
suspension

IX

IY

EY

EX

(for main sapphire mirror)

laser room

anti symmetric port

BS

KAGRA Layout

Type-A
Tower

Cryogenic 
Payload© KAGRA Collaboration / Rey. Hori



4Cryostat & Cryogenic Payload

c

Cryostat

© KAGRA Collaboration / Rey. Hori

Cryogenic Payload

[T. Ushiba, et. al., Class. Quantum, 38, 085013, (2021)]

1.2 m



5Cryogenic Payload

Platform (PF)

Intermediate mass (IM)
& Recoil mass

©Rohan Mehra

Actual payload 3D CAD

Marionette (MN)
& Recoil mass

Test mass (TM)
& Recoil mass



6Sensors & Actuators
Reflective photosensor 

Optical Lever

Coil-magnet actuator 

Measure 
the relative displacement 
of the mass and recoil mass

Measure 
the movement of the mass 
relative to the ground

Apply the force to the mass

L
R

P
T

V
Y

PF

MN

TM

IM

MNR

RM

Optical Lever

Reflective photosensor×6
（L, T, V, R, P, Y）

Coil-magnet actuator × 6
(L, T, V, R, P, Y)

Coil-magnet actuator × 4
(L, P, Y）

RM ChainTM Chain

Coil-magnet actuator × 6
(L, T, V, R, P, Y)

IRM

・・・Magnet

・・・Coil

Reflective photosensor×6
（L, T, V, R, P, Y）

(L, P, Y)

(L, T, V,
R, P, Y)

(L, P, Y)



7Reflective Photosensor
・Monitor the changes in relative distance 

as changes in light intensity

・Wide dynamic range 
for use at cryogenic temperatureLED

PD

TARGET

PD: InGaAs  LED: InGaAsP
Direct bandgap 
for cryogenic use 

Wavenumber of e-

En
er

gy
 o

f e
-

Valence 
band

Conduction
band

Direct bandgap

e-

phonon

Conduction
band

Valence 
band

Indirect bandgap

e-

Wavenumber of e-

En
er

gy
 o

f e
-

No energy assistance 
by phonons
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9KAGRA Sensitivity in O3GK

[ H. Abe et al ., PTEP, (2022) ]

Below 100 Hz
(Apr. 7 - Apr. 21, 2020)

Limited by 
local damping 
control noise 
10 ~   50 Hz: Type-A
50 ~ 100 Hz: Type-Bp

Observing run 
with GEO600



10Improvement for O4a
For example...

Observation-Ready
Observation

Frequency [Hz]

Frequency [Hz]

G
ai

n 
[d

B]
Ph

as
e 

[d
eg

]

phase 
margin: 21°

UGF: 
0.19 Hz

Before we lock 
the interferometer, 
damping control is on 
(Blue line) 

After we lock the interferometer, 
we apply elliptic filter to 
reduce the gain above ~ 0.2 Hz
for noise reduction 
(Red line) ex) open loop TF of damping control ITMX P



11Improvement for O4a

Freqency [Hz]
10 20 30 40 50 100

Di
sp

la
ce

m
en

rt 
[m

/rt
Hz

]

10-22

10-10

10-12

10-14

10-16

10-18

10-20

Damping control noise
before improvement

Final
Target

O4
Target

Damping control noise
before improvement

damping control noise for Type-A suspension (except for EX)

128 Mpc As for the suspension
of which we improved 
the loop,
damping control 
noise successfully 
reduced

Some updates on 
control loop 
(apply elliptical 
low-pass filter above 10 Hz
in observation phase)
was done for 
Type-A suspension
(except for ETMX)



12Improvement for O4a

O4a (〜 1.3 Mpc)

DARM improvement in 
low-frequency region 

O3GK (〜 1.0 Mpc)
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data is from JGW-T2113624-v3 (Y. Michimura)

DARM soon after O4a (Jul. 2023)

(mainly: EX_L, SR3_P, BS_Y)

Damping Control Noise
during O4a 

128 Mpc

(K. Komori)

25 Mpc

Problem - Damping Control Noise -

O5 target
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data is from JGW-T2113624-v3 (Y. Michimura)

Problem - Damping Control Noise -
DARM soon after O4a (Jul. 2023) (K. Komori)

128 Mpc

25 Mpc

O5 target

(mainly: EX_L, SR3_P, BS_Y)

Damping Control Noise
after O4a (Jan. 2024) 

(mainly: EX_L, SR3_P, BS_Y)

Damping Control Noise
during O4a 

tuning the controller
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16How can we reduce 
damping control noise? 

“Better” sensor
Less noise sensor

under consideration 
to develop
*we should consider 
cryogenic operation

(compare to 
reflective photosenser)

“Better” control
Optimize the 
trade-off between 
damping performance 
& control noise 

・some advanced techniques
etc...

・tuning the controller



17Modal Damping
- one of the candidates for improvement -
Conventional control in KAGRA Modal damping control

Mode 1

Mode 2

Feedback for 
each vibration mode

Stage 1

Stage 2

Feedback for each stage
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c

Optimization of 
damping control 

for multi-DoF system 
is complex

Single DoF resonance problem 

Decouple the oscillations of the system into modes

Controller & its optimization     
should be simpilified

Modal Damping
- one of the candidates for improvement -
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(For example...)
Gain can be increased for modes that require damping and 
decreased for those that don’t require for noise performance
→ Automation according to the daily seismic noise is also possible

Gain tuning becomes easy

c

c

D
IS

PL
AC

EM
EN

T 
[m

/N
]

FREQUENCY [Hz]

NOT damped Top mass to Top mass longitudinal transfer function

mode1
mode2 mode3 mode4

Determine the gain for each mode respectively



20PENDULUMCARTESIAN 
COORDINATES

MODAL 
COORDINATES

�⃗�

MODAL DAMPING
CONTROLLER

�⃗�

(𝚽&𝟏)𝑻

�⃗�m

�⃗�,	̇𝑮𝟏 𝑮𝟐 𝑮𝟑 𝑮𝟒, , ,

local sensor

actuator
(only top mass)

(coordinate transformation)

We need to know the motion of 
every stage for modal damping,
but don’t want to include noisy 
sensor effect as much as possible



21PENDULUMCARTESIAN 
COORDINATES

MODAL 
COORDINATES

STATE
ESTIMATOR

�⃗�

MODAL DAMPING
CONTROLLER

�⃗�

(𝚽&𝟏)𝑻

�⃗�m �⃗�,	̇

𝑮𝟏 𝑮𝟐 𝑮𝟑 𝑮𝟒, , ,

local sensor

actuator
(only top mass)

(coordinate transformation)



22PENDULUMCARTESIAN 
COORDINATES

MODAL 
COORDINATES

STATE
ESTIMATOR

�⃗�

MODAL DAMPING
CONTROLLER

�⃗�

(𝚽&𝟏)𝑻

�⃗�m �⃗�,	̇

𝑮𝟏 𝑮𝟐 𝑮𝟑 𝑮𝟒, , ,

local sensor

actuator
(only top mass)

(coordinate transformation)

𝒙3̇ = 𝑨𝒙3 + 𝑩𝒖 + 𝑳(𝒚 − 𝑪𝒙3)
𝒚3 = 𝑪𝒙3

State Estimator

�̇� = �̇� − 𝒙3̇ = 𝑨 − 𝑳𝑪 𝒆Estimator error:

�̇�
�̇� = 𝑨 − 𝑩𝑲 𝑩𝑲

𝟎 𝑨 − 𝑳𝑪
𝒙
𝒆

State space of closed loop system

! = #$

System
$̇ = &$ + ()

𝒖 = −𝑲𝒙3

Designed with LQR

𝑱 = A (𝒙𝐓𝑸𝒙 +
D

𝟎
𝒖𝐓𝑹𝒖)𝐝𝒕

Weight
𝑸 : for 

estimation error
𝑹 : for sensor output



23Simulation
modal damping control with state estimator 
for dummy cryogenic payload

was used 
to construct the model of cryogenic payload 
and get its state space matrix

[*]

[* T. Sekiguchi, JGW-T1503729, (2015)]

Dummy cryogenic payload →
(in preparation)

19 kg

23 kgTM

21 kg

PF   65 kg

IM

MN



24Result of Simulation

Frequency [Hz]

Modal damped top mass to top mass longitudinal TF

Frequency [Hz]

Ph
as

e 
[d

eg
]

D
is

pl
ac

em
en

t [
m

/N
]

19 kg

23 kgTM

21 kg

PF   65 kg

IM

MN
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Time [sec]

M
ag

ni
tu

de
 [a

.u
.]

TM response to impulse at suspension point

1/e decay time

designed (= 10 s)
in this simulation
(result =10.2 s)

KAGRA requirement
(Not a number with 
any particular reason)

Result of Simulation

just check 
if the vibration subsides quickly enough
(and approximate length of time to wait)

19 kg

23 kgTM

21 kg

PF   65 kg

IM

MN
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Frequency [Hz]

19 kg

23 kgTM

21 kg

PF   65 kg

IM

MN

Result of Simulation
TM noise response (for dummy cryogenic payload)

Reflective photo sensor noise
(klog17939, T. Ushiba)

Seismic noise 
at KAGRA site
(JGW-T1910436, 

K. Miyo)with no control

with modal control 
+ state estimator

with current control

noise requirement

A
m

pl
itu

de
 [m

/√
H

z]
Noise reperformance



27Conclusion & Outlook
Suspension damping control 
has been updated from O3GK.

However, it still need to be improved 
to achieve O5 target sensitivity

Simulation of new control and 
preparation of test are ongoing

Dummy cryogenic payload (in preparation) →
We are considering to develop 
new cryogenic sensor and test together





BACKUP 
SLIDES



30Coil-magnet Actuator
Coil (RM chain)＋ SmCo magnet (TM chain) 

Magnetization does not 
decrease significantly 
even at cryogenic temperatures 

Magnet

Coils are also vibration isolated
A magnetic field 
is generated by 
passing an 
electric current 
through the coil

→ Apply the force 
to the magnet

standoff
Coil



31Local Damping Control

Mass

Controller

SensorActuator

Detect the motion 
of the mass
by local sensor

Send signal to 
the actuator
through the controller

Applies a force 
proportional to the 
velocity of the mass
to suppress the vibration



32Calculation for 
Mode Decomposition

𝐌�̈⃗� + 𝐊�⃗� = �⃗�

�⃗� = 𝚽�⃗�

𝐌m�̈⃗� + 𝐊m�⃗� = �⃗�m

𝐌:Mass matrix 𝐊:Stiffness matrix
𝚽:Eigen vector of matrix𝐌&𝟏𝐊

�⃗�:displacement �⃗�:modal displacement �⃗�:Control force

*subscript “m” means 
they are in modal basis

・ Cartesian EoM of suspension

・ Coordinate transformation

・ Modal Equation

For the aplication to real system,    
transformation related to sensor/actuator  
signals are also required



33How to Decompose the Mode
Equation of Motion: 𝐌�̈� + 𝐊𝒙 = 0

(−𝝎𝟐𝐌 + 𝐊)𝒙M(𝝎) = 0
Fourier transform

(𝐊 − 𝛌𝐌)𝝓	 = 0
𝛌 = 𝝎𝟐, 𝝓 = 𝒙M

Eigenvector: 𝝓 , Eigenvalue: 𝛌



34How to Decompose the Mode
𝐌: positive definite matrix

𝐊: positive semi-definite matrix
real symmetric

eigenvectors corresponding to distinct eigenvalues 
are always orthogonal to one another

eigenvectors of 𝝓 are new basis (modal basis) 



35State Estimator

�̇� = 𝐴𝒙 + 𝐵𝒖
𝒚 = 𝐶𝒙
𝒙: system’s state 

(position, velocity, etc...)
𝐮: input
𝐲: measurement

State space equation

same dynamics 𝒙3̇ = 𝐴𝒙3 + 𝐵𝒖
𝒚3 = 𝐶𝒙3
Given the same input signal 𝐮,
and produce the estimation 𝐱X
The estimate of output	𝐲X is  
compared to 𝐲

estimated state 
will be included 
in the feedback control

State estimator

System

Observer

𝒆 = 𝒚 − 𝒚3 = 𝒚 − 𝐶𝒙3Error:

𝒙3̇ = 𝐴𝒙3 + 𝐵𝒖 + 𝐿(𝒚 − 𝐶𝒙3) 𝐿

𝒖 = −𝑲𝒙3

To minimize 𝐞, a term proportional 
to the error is added to 𝒙3̇

: State Estimator



36PENDULUMCARTESIAN 
COORDINATES

MODAL 
COORDINATES

STATE
ESTIMATOR

!⃗

MODAL DAMPING
CONTROLLER

#⃗

(%&'))

#⃗m +⃗,	̇

.' ./ .0 .1, , ,

local sensor

actuator
(only top mass)

OpLev
or

WFS

We can easily 
add in other 
sensors with 
(almost) no 
impact on stability

Useful for 
damping of the 
lowest freq. mode

couple 
more to test mass 
than to top mass

(coordinate transformation)
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Linear Quadratic Regulator?
What is

Automatic algorithm 
which finds optimal feedback 
for linear systems in state-space form

𝒙, �̇�𝒇 𝒇 : Actuation

: Velocity State
: Displacement State𝒙

�̇�
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Linear Quadratic Regulator?
What is

Automatic algorithm 
which finds optimal feedback 
for linear systems in state-space form

𝒙, �̇�𝒇 𝒇 : Actuation

: Velocity State
: Displacement State𝒙

�̇�
・with minimum control effort
・in the least time

Minimize the size of state vector



39System

𝒖
�̇� = 𝑨𝒙 + 𝑩𝒖

−𝑲

𝒙

LQR feedback gain

𝒏 states,𝒎 inputs

𝒙 =
𝒙𝟏
⋮
𝒙𝒏

, 𝒖 =
𝒖𝟏
⋮
𝒖𝒏

𝑨: 𝒏×𝒏,𝑩: 𝒏×𝒎,
𝑲:𝒎×𝒏

Assumption
(Completely) 
Controllable

We have 
knowledge of all states 𝒙



40Our Goal Here
・make the size of 𝒙 very small

𝒙𝐓𝒙 → 𝟎
・make the size of 𝒖 very small

𝒖𝐓𝒖 → 𝟎
(to minimize the noise / keep actuator in range)

Total Cost 𝑱 = A (𝒙𝐓𝒙 +
D

𝟎
𝒖𝐓𝒖)𝐝𝒕



41Cost Function

𝑱 = A (𝒙𝐓𝒙 +
D

𝟎
𝒖𝐓𝒖)𝐝𝒕

𝑱 = A (𝒙𝐓𝑸𝒙 +
D

𝟎
𝒖𝐓𝑹𝒖)𝐝𝒕

care about the size of 
some states / actuators than others

𝑸,𝑹: weighting function

Minimize this with
・Linear algebra
・Calculs of variations

!"! → $ !"! → $
We want 

&
are true at all time

𝑸 = 𝑸𝐓 ≥ 𝟎, 𝑹 = 𝑹𝐓 ≥ 𝟎
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the feedback gain with LQR?
How can we find

Solve ARE below

𝑷𝑨 + 𝑨𝐓𝑷 − 𝑷𝑩𝑹&𝟏𝑩𝐓𝑷 + 𝑸 = 𝟎
(Algebraic Riccati Equation)

Calculate 𝑷
Feedback gain   𝑲 = 𝑹&𝟏𝑩𝐓𝑷

𝑲	minimizes 𝑱

Control input 𝒖 = −𝑹&𝟏𝑩𝐓𝑷𝒙



43LQR
in Frequency Domain

𝑱 = A (𝒙𝐓𝑸𝒙 +
D

𝟎
𝒖𝐓𝑹𝒖)𝐝𝒕

we want treat these in frequency region 

𝑱 =
𝟏
𝟐
A (𝒙 −𝒋𝝎 𝐓𝑸𝒙(𝒋𝝎) +
D

&D
𝒖 −𝒋𝝎 𝐓𝑹𝒖(𝒋𝝎))𝐝𝛚

Parseval’s theorem
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𝑱 =
𝟏
𝟐
A (𝒙 −𝒋𝝎 𝐓𝑸𝒙(𝒋𝝎) +
D

&D
𝒖 −𝒋𝝎 𝐓𝑹𝒖(𝒋𝝎))𝐝𝛚

=
𝟏
𝟐
A (𝒙f −𝒋𝝎 𝐓𝒙f 𝒋𝝎 +
D

&D
𝒖f −𝒋𝝎 𝐓 𝒖f 𝒋𝝎 )𝐝𝛚

�̇� = 𝐸𝑢𝜇 + 𝐹𝑢𝑢
�̇� = 𝐸𝑥𝜒 + 𝐹𝑥𝑥
Filtering function

𝑢k = 𝐺𝑢𝜇 + 𝐻𝑢𝑢
�̅� = 𝐺𝑥𝜒 + 𝐻𝑥𝑥
Filtered states

LQR
in Frequency Domain
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𝑱 =
𝟏
𝟐
A (𝒙f −𝒋𝝎 𝐓𝒙f 𝒋𝝎 +
D

&D
𝒖f −𝒋𝝎 𝐓𝒖f 𝒋𝝎 )𝐝𝛚

𝑱 = A (𝒙𝑻𝑯𝒙
𝑻𝑯𝒙𝒙 + 𝟐

D

𝟎
𝒙𝑻𝑯𝒙

𝑻𝑮𝒙𝝌 + 𝝌𝑻𝑮𝒙𝑻𝑮𝒙𝝌

+ 𝝁𝑻𝑮𝒖𝑻𝑮𝒖𝝁 + 𝟐𝝁𝑻𝑮𝒖𝑻𝑯𝒖𝒖 + 𝒖𝑻𝑯𝒖
𝑻𝑯𝒖𝒖)𝐝𝐭

Parseval’s theorem

LQR
in Frequency Domain
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𝑱 = A (𝒙𝑻𝑯𝒙
𝑻𝑯𝒙𝒙 + 𝟐

D

𝟎
𝒙𝑻𝑯𝒙

𝑻𝑮𝒙𝝌 + 𝝌𝑻𝑮𝒙𝑻𝑮𝒙𝝌

+ 𝝁𝑻𝑮𝒖𝑻𝑮𝒖𝝁 + 𝟐𝝁𝑻𝑮𝒖𝑻𝑯𝒖𝒖 + 𝒖𝑻𝑯𝒖
𝑻𝑯𝒖𝒖)𝐝𝒕

LQR
in Frequency Domain

= A 𝒛𝑻𝑸𝒛 + 𝒖𝑻𝑹𝒖 + 𝟐𝒛𝑻𝑵𝒖 𝐝𝒕
D

𝟎



47LQR
in Frequency Domain

𝑱 = A 𝒛𝑻𝑸𝒛 + 𝒖𝑻𝑹𝒖 + 𝟐𝒛𝑻𝑵𝒖 𝐝𝒕
D

𝟎

𝑸 =
𝑯𝒙
𝑻𝑯𝒙 𝑯𝒙

𝑻𝑮𝒙 𝟎
𝑮𝒙𝑻𝑯𝒙 𝑮𝒙𝑻𝑮𝒙 𝟎
𝟎 𝟎 𝑯𝒙

𝑻𝑯𝒙

𝑹 = 𝑯𝒖
𝑻𝑯𝒖

𝒛 =
𝒙
𝝌
𝝁

𝑵 =
𝟎
𝟎

𝑮𝒖𝑻𝑯𝒖



48LQR
in Frequency Domain

𝑨f =
𝑨 𝟎 𝟎
𝑭𝒙 𝑬𝒙 𝟎
𝟎 𝟎 𝑬𝒖

𝑩f =
𝑩
𝟎
𝑭𝒖

�̇� = 𝑨f𝒛 + 𝑩f𝒖

Filtering state is augmented 
and pluged into the LQR algorithm



49LQR
in Frequency Domain
Control law
→ solve this ARE

𝑷𝑨f + 𝑨f𝑻𝑷 − (𝑷𝑩f + 𝑵)𝑹&𝟏(𝑷𝑩f + 𝑵)𝐓+𝑸 = 𝟎

𝒖 = 𝑹&𝟏(𝑷𝑩f + 𝑵)𝐓𝒛

𝑲 = 𝑹&𝟏(𝑷𝑩f + 𝑵)𝐓feedback gain:



50State Estimator
for Modal Damping

�̇� = 𝐴m𝑞 + 𝐵m𝑢 𝑦 = 𝐶𝑥𝑥 = 𝜙𝑞

𝑞Ẋ = 𝐴m𝑞X + 𝐵m𝑢 − 𝐿m(𝐶𝑥X − 𝑦)

modal system:

estimator:

estimator error: 𝑞y = 𝑞X − 𝑞

𝑞ẏ = 𝐴m𝑥y − 𝐿m𝐶m𝑞y



51State Estimator
for Modal Damping
𝑞ẏ = 𝐴m𝑥y − 𝐿m𝐶m𝑞y 𝜉̇ = 𝐴{| 𝜉 + 𝐶{|𝑢

transpose fictious system 
which has the same dynamics

sensor 
signal

Filtering function and Filtered 𝑢
�̇� = 𝐸𝜇 + 𝐹|𝑢 𝑢k = 𝐺𝜇 + 𝐻𝑢
Augmented state space

�̇� = �̅�𝑧 + 𝐵k𝑢 𝑨f = 𝑨𝒎𝑻 𝟎
𝟎 𝑬

𝑩f = 𝑪𝒎𝑻
𝑭

𝒛 = 𝜉
𝜇



52State Estimator
for Modal Damping

�̇� = �̅�𝑧 − 𝐵k𝐿𝑧 𝑸 = 𝑸𝐦 𝟎
𝟎 𝑮𝑻𝑮

Augmented feedback gain

𝐿k = 𝐿�| 𝐿�| = lqr(�̅�, 𝐵k, 𝑸, 𝑹,𝑵)

𝑹 = 𝑯𝑻𝑯 𝑵 = 0
𝑮𝒖𝑻𝑯𝒖

mode reconstruction cost

𝑯𝒙
𝑻𝑯𝒙 𝑯𝒙

𝑻𝑮𝒙
𝑮𝒙𝑻𝑯𝒙 𝑮𝒙𝑻𝑮𝒙


