# Characterization of Cryogenic Suspension in KAGRA



Masahide Tamaki <sup>A,B,\*</sup>, Takafumi Ushiba <sup>B</sup>, Koseki Miyo <sup>B</sup>, Takayuki Tomaru <sup>C</sup>, Ryutaro Takahashi <sup>C</sup>, Shinji Miyoki <sup>B</sup> Phys. S. U. T<sup>A</sup>, ICRR<sup>B</sup>, NAOJ<sup>C</sup> \* tamaki83@icrr.u-tokyo.ac.jp



Cooling of cryogenic suspension (Type-A Payload), is in progress and the current temperature of ETMX (the coolest suspension now) is roughly 80 K. Then we compared how the transfer function Q-value and photosensor counts changed compared to their values at room temperature (for MN and IM). In this poster, •••Type-A
•••Type-B the results of the comparisons and the discussion on them are reported. This poster is

**Overview of Cryogenic Suspension** 

Type-A Suspensions · · for sapphire mirrors

Reflective Photosensor [1]

te for Cosmic Ray Research University of Tokyo

mainly about

ITMY

this suspension



## Q-value

We shook the suspension system and obtained Qvalues from the decay time of the vibrations.



### Photosensor's Output

Sensor outputs (OSEMINF\_OUT\_DQ) at 77 K (MNR) or 80 K (IMR) were compared with the value at 297 K. V1~V3 and H1~H3 are sensors for vertical and horizontal displacement respectively.





#### **Discussion and Future Works**

- Resonance friequecies and gain of TF became larger by cooling.
- Higher Q-values were observed as expected at the modes where the sapphire fiber's influence is stronger.
- We don't know why photosensor's count increased at low temperature, so we will consider it.
- We intend to carry out similar characterization on other CRY suspension (EY, IX, IY) systems that are about to start cooling.

#### Sensor Name

#### References

[1] S. Fukunaga "Development and application" of cryogenic displacement sensors towards the damping control of KAGRA cryogenic payloads", Master Thesis, University of Tokyo (2019)